Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классификация аппаратов и их параметры

Классификация аппаратов и их параметры  [c.47]

На базе развитой теории структуры советские ученые быстро развили и методы кинематического анализа механизмов. Каждому семейству, классу и виду механизмов, установленному разработанной классификацией, соответствовал свой метод кинематического и силового анализа. Кроме геометрического аппарата исследования, широкое применение получил аналитический аппарат, некоторые методы векторного и винтового исчисления и др. Можно утверждать, что к 50-м годам уже не встречалось никаких принципиальных трудностей в решении задач кинематического анализа плоских механизмов. Была создана стройная научная теория кинематического исследования, доступная самым широким кругам инженеров и конструкторов. На основе разработанных методов было произведено большое количество исследований кинематических свойств отдельных механизмов. Были выведены аналитические зависимости, характеризующие взаимосвязи между различными метрическими и кинематическими параметрами плоских и пространственных механизмов, разработаны графические и графо-аналитические приемы определения этих параметров, построены и рассчитаны графики, номограммы, атласы и таблицы. Все это позволило инженерам и конструкторам производить необходимый выбор того или иного механизма, с помощью которого можно было осуществить требуемое движение.  [c.27]


Применение метода В. А. Зиновьева к исследованию механизмов с соприкасающимися рычагами см. [94]. Рассмотренный метод по классификации, приведенной в гл. 22, может быть отнесен к геометрическим методам. Этот метод основан на простом аппарате аналитической геометрии и, в частности, теории замкнутых векторных контуров в трехмерном пространстве, что делает его доступным для широкого практического применения. Вместе с тем векторные уравнения замкнутости в этом методе отображают лишь замкнутые контуры геометрических осей звеньев и их ориентацию в пространстве, не определяя действительных относительных положений соединенных между собой звеньев как пространственных тел. Для полного определения относительных положений реальных звеньев в пространстве необходимо составлять дополнительные уравнения взаимосвязей между параметрами абсолютных движений звеньев. Привязка движений различных звеньев к одной неподвижной системе координат хотя и усложняет уравнения взаимосвязей между звеньями, но дает возможность непосредственного определения параметров абсолютных движений звеньев.  [c.89]

С вопросами стандартизации, нормализации и унификации в машиностроении связана также типизация. Она сопровождается улучшением параметров машин, приборов и аппаратов, совершенствованием их конструкции, сокращением времени, затрачиваемого на подготовку производства, улучшением технологических процессов. Огромное разнообразие типов и форм деталей можно во много раз уменьшить путем их классификации, объединив однотипные детали в соответствующие классификационные подразделения.  [c.501]

Это было одним из доказательств возможности осуществления одного из основных положений идеи агрегатирования — обратимости аппаратов самого различного функционального назначения. Было доказано, что в пределах одних и тех же или близких значений параметров давления, температуры, поверхности нагрева или охлаждения, производительности н др. — все перечисленные детали и узлы сосудов из 12 элементов могут быть унифицированы независимо от функционального назначения каждого, а применительно к резко отличным параметрам — нормализованы. В результате оказалось, что при классификации сварных сосудов должны регламентироваться не типы аппаратов, а только типы сосудов (фиг. 132) и пределы их применения в зависимости от параметров давления, производительности и среды.  [c.161]

Информация о полях скорости и давления, необходимая для решения задач о распределении и превращении веществ в реакционных аппаратах, часто может быть получена из рассмотрения чисто гидродинамической стороны проблемы. Огромное разнообразие реальных течений жидкости, подчиняющихся одним и тем же уравнениям гидродинамики, обусловлено множеством геометрических, физических и режимных факторов, определяющих область, тип и структуру течения. Классификацию течений для описания их специфических свойств можно произвести различными способами. Например, широко распространена классификация течений по величине важнейшего режимно-геометрического параметра — числа Рейнольдса Ке течения при малых числах Рейнольдса [178], течения при больших числах Рейнольдса (пограничные слои [184]), течения при закритических числах Рейнольдса (турбулентные течения [179]). Следует заметить, что такая классификация имеет важный методический смысл, поскольку определяет малый параметр, Ке или Ке , и указывает надежный метод решения нелинейных гидродинамических задач — метод разложения по малому параметру. Не отрицая плодотворность такой классификации течений, в данной книге будем исходить не из математических и вычислительных удобств исследователя гидродинамических задач, а из практических потребностей технолога, рассчитывающего конкретный аппарат с почти предопределенным его конструкцией типом течения реагирующей среды. В этой связи материал по гидродинамике разбит на две главы. В первой из них рассматриваются течения, определяемые взаимодействием протяженных текучих сред со стенками аппарата или между собой течения в пленках, трубах, каналах, струях и пограничных слоях вблизи твердой поверхности. Во второй главе рассматривается гидродинамическое взаимодействие частиц различной природы (твердых, жидких, газообразных) с обтекающей эти частицы дисперсионной средой.  [c.9]


Таким образом, отказ от традиционных методов классификации аппаратов только по типам предопределил специализацию заводов химического машиностроения на првдщипиально иных началах — на основе изготовления на одном и том же заводе аппаратов тождественных или близких размерных параметров самого различного функционального назначения, но входящих в один и тот же конструктивно-нормализованный ряд (фиг. 133).  [c.166]

Силовые, температурные и коррозионные факторы гфиводят при эксплуатации аппаратов к появлению трещин различной природы, язв, свищей, недопустимых пластических деформаций, изменению механических свойств металла и другим повреждениям. В табл. 4.1 приведена классификация дефектов различной природы и диагностируемых параметров.  [c.177]

В своих работах [84, 85], посвященных аналитическому исследованию механизмов, Ю. Ф. Морошкин так же, как и С. Г. Кислицын (см. гл. 16), обратил внимание на возможность носледо-вательного применения одних лишь уравнений преобразования параметров движения к исследованию механических цепей и использованию аппарата линейной алгебры и, в частности, матричного исчисления при анализе механизмов. С общих аналитических позиций он рассмотрел также проблемы классификации кинематических пар и цепей.  [c.174]

В натурной тензометрии квазистатнческих и повторно-статических деформаций для однократного или нескольких циклов нагружений используют средства и приемы, отработанные для измерения статических деформаций. Определяющим признаком при классификации тензорезисторов для измерений статических деформаций является прежде всего температура. Условно можно выделить следующие характерные диапазоны температур пониженные и умеренные (—60. .. 70°С), при которых работают химические аппараты, баллоны высокого давления, сосуды, Marn TpajrbHbie трубопроводы [15] повышенные (св. 250. .. 400 С), характерные для работы деталей водо-водяных атомных реакторов [25], элементов планера сверхзвукового самолета [92] высокие (св. 600. .. 1200° С), свойственные элементам тепловой энергетики при сверхкритических параметрах пара [33, 39], деталям горячего тракта судовых н авиационных [40] газотурбинных двигателей и др.  [c.166]

Хотя вертолет является самым малошумящим летательным аппаратом вертикального взлета, уровень вызываемого им шума все же достаточно высок. Это может стать существенным недостатком вертолета, если в процессе проектирования не принять специальных мер по снижению шума. Поскольку требования в отношении уровня шума летательных аппаратов становятся все более жесткими, исследование звукоизлучения несуш,его винта в процессе проектирования вертолета приобретает важное значение. Вследствие периодичности обтекания лопастей винта спектр шума заметно концентрируется вблизи частот, кратных частоте NQ прохождения лопастей (рис. 17.1). Излучение шума вызывается тем, что постоянные по величине составляюш,ие подъемной силы и силы сопротивления враш,аются вместе с лопастями, а также изменением высокочастотных составляюш,их этих сил. В области высоких частот наблюдается расширение спектральных линий, что связано со случайными изменениями параметров течения, в частности с флуктуациями нагрузок, воз-никаюш,их под влиянием свободных вихрей. Акустическое давление изменяется по времени в основном с периодом 2n/NQ, причем возникают резкие пики давления, связанные с местными аэродинамическими явлениями, например проявлениями сжимаемости и вызываемыми вихрями изменениями нагрузок. В составе излучаемого несуш,им винтом шума различают вихревой (или широкополосный) шум, шум враш еная лопастей и хлопки лопастей. Хотя различие между этими составляюш,ими не столь велико, как это поначалу кажется, такая классификация полезна для представления результатов.  [c.821]

Обмоточные провода - это провода, применяемые для изготовления обмоток электрических машин, аппаратов и приборов. По применяемым проводниковым материалам провода делятся на медные, алюминиевые и из сплавов сопротивления. По вилам изоляции обмоточные провода в основном можно классифицировать с.дедуюшим образом с эмалевой изоляцией или эмалированные провода с волокнистой или комбинированной эмалево-волокнистой изоляцией, в том числе со стекловолокнистой и бумажной с пластмассовой изоляцией, включая пленочную с эмалево-п аастмассовой изоляцией. Потребителям обмоточных проводов необходимо знать параметры и свойства обмоточных проводов в целях их правильного и наиболее эффективного использования в изделиях. Одним из важнейших па-раметров обмоточных проводов является нагревостойкость. Во всем мире прочно установилась классификация обмоточных проводов по длительно-допустимой рабочей температуре. На смену понятия класса нафевостойкости пришло понятие температурного индекса, численно равного температуре, при которой в течение не менее 20 ООО ч. пробивное напряжение (или другой параметр) сохраняется выше определенного заданного уровня.  [c.362]


Для обнаружения и регистрации нефтяных загрязнений морей, озер и рек применяют много различных методов, которые позволяют фиксировать аномальное изменение величииы какого-нибудь параметра водной среды при переходе от чистого поверхностного слоя к загрязненному. К числу наиболее широко используемой для этой цели аппаратуры относятся многоканальные фотокамеры, радиолокаторы для картографирования, инфракрасные сканирующие устройства и микроволновые радиометры. Однако ни один из этих приборов не может однозначно определить наличие нефтяного пятна в течение 24 ч или дать какую-нибудь возможность для классификации типа нефтепродукта. Сотрудники службы береговой охраны США в работе [209] представили результаты исследования флюоресцентных характеристик 29 проб сырой нефти. Оказалось, что каждую пробу можно однозначно охарактеризовать по длине волны максимума излучения, времени жизни и эффективности флюоресценции [уравнение (7.52)]. Более того, величина эффективности флюоресценции вполне достаточна, чтобы выполнять измерения с борта летательных аппаратов. К этому выводу независимо пришли авторы работы [208].  [c.483]


Смотреть страницы где упоминается термин Классификация аппаратов и их параметры : [c.7]    [c.6]    [c.224]   
Смотреть главы в:

Безреагентные методы обработки воды в энергоустановках Изд.2  -> Классификация аппаратов и их параметры



ПОИСК



Классификация аппаратов



© 2025 Mash-xxl.info Реклама на сайте