Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Установки с использованием газов

УСТАНОВКИ С ИСПОЛЬЗОВАНИЕМ ГАЗОВ  [c.77]

В середине 50-х годов в связи с резким увеличением добычи природного газа работы по сжиганию твердого топлива в топках кипящего слоя в нашей стране были прекращены и не возобновлялись до 1974 года, но в Англии, Китае и США начали создаваться опытно-промышленные установки с использованием этого способа сжигания.  [c.5]

Фиг. 134. Схема дизельной установки с использованием охлаждающей воды и отходящих газов. Фиг. 134. Схема дизельной установки с использованием охлаждающей воды и отходящих газов.

Цикл газотурбинной установки с использованием тепла отходящих из регенератора газов для охлаждения  [c.98]

Когда вся жидкость перельется в баллон, показания весов будут оставаться неизменными. Тогда внутри установки останется только газ (около 10% массы полной начальной заправки), и нужно будет заканчивать опорожнение установки с использованием агрегата перекачки, что мы будем рассматривать ниже.  [c.321]

На рис. 16-11 показана одна из предлагаемых схем высокотемпературного ТЭ (более 600° С) значительной мощности, предназначенного для работы в наземных установках с использованием в качестве топлива природного газа и окислителя кислорода. ТЭ состоит из двух электродов, помещенных в твердом электролите, которым служит расплав карбоната калия, впитанного в окись магния, В катоде природный газ вступает в реакцию с углекислым газом и паром, которые  [c.280]

Рис. 9.2. Схема газотурбинной установки с использованием теплоты выхлопных газов Рис. 9.2. <a href="/info/114879">Схема газотурбинной установки</a> с использованием теплоты выхлопных газов
Эта проблема возникает только в установках с использованием жидких углеводородов в качестве источника энергии. Устройство для рециркуляции газов относится к энергосиловой установке в целом и к области ее использования, а не собственно к двигателю. Тем не менее без такого устройства низкий уровень окислов азота в продуктах сгорания (одно из преимуществ, приписываемых двигателю Стирлинга) не может быть обеспечен. Причины этого уже рассматривались нами ранее. В настоящем разделе будут рассмотрены методы снижения концентрации окислов азота в выбросах в атмосферу.  [c.178]

Принципиальная схема сушильной установки с использованием дымовых газов представлена на рис. 9.4.  [c.398]

Из приведенных данных следует, что по совокупным характеристикам газодинамические покрытия, получаемые на описанной установке с использованием в качестве рабочего газа воздуха, что обусловливает их экономичность, являются весьма перспективными для антикоррозионной защиты труб в кислых и соляных средах.  [c.256]

Использование потоков газовзвеси при поперечном обтекании пучков труб представляет большой интерес. Известны реальные условия работы таких конвективных поверхностей с запыленным газом (тепло-утилизационные установки промышленных печей и пр.), для которых характерно падение теплопередачи из-за загрязнения труб. С другой стороны, возможна организация очистки поверхностей нагрева при одновременном улучшении теплообмена путем подачи в поток специально подобранной насадки [Л. 23, 56].  [c.245]


Второй метод, применяемый при сжижении газов, заключается в адиабатном расширении газа с отдачей внешней работы. Наиболее совершенную установку для сжижения воздуха создал академик П. Капица в СССР по циклу низкого давления с использованием турбодетандера.  [c.340]

Во многих установках химической технологии, переработки нефти и других видов сырья определяющими являются законы движения гетерогенных систем. Отметим, в частности, процессы с использованием неподвижного зернистого слоя катализатора, через который пропускается реагирующая газовая смесь> процессы с взвешенным под действием восходящего потока газа зернистым слоем ( кипящий или псевдоожиженный слой), процессы интенсивного барботажа жидкости газом, процессы в обогреваемых трубах или колоннах, внутри которых движется газожидкостная смесь, где проходят химические реакции. Перспективным представляется использование акустических воздействий на интенсификацию физико-химических процессов в гетерогенных системах. Сейчас становится все более очевидной необходимость более полного использования методов механики при изучении и последующем совершенствовании и интенсификации технологических процессов.  [c.10]

УСТАНОВКИ ДЛЯ ОЖИЖЕНИЯ ГАЗОВ С ИСПОЛЬЗОВАНИЕМ  [c.86]

УСТАНОВКИ ДЛЯ ОЖИЖЕНИЯ ГАЗОВ С ИСПОЛЬЗОВАНИЕМ ДЕТАНДЕРОВ gy  [c.89]

Одной из мер повышения степени совершенства перехода колоты в работу в газотурбинной установке является применение регенерации теплоты. Регенерация теплоты заключается в использовании теплоты отработавших газов для подогрева воздуха, поступающего в камеру сгорания. Экономичность ГТУ при применении регенерации повышается. Схема установки с регенерацией представлена на рис. 13.12.  [c.167]

Температуры теплоотдатчика и рабочего тела в ряде случаев, например, в паросиловых установках, существенно различны, так как ни свойства рабочего тела, ни свойства конструкционных материалов не позволяют довести температуру рабочего процесса цикла до температуры теплоотдатчика. Применение жаропрочных конструкционных материалов может несколько уменьшить эту разность температур того же самого можно достигнуть переходом на высокие давления рабочего тела в цикле (применительно к воде это будут закритические давления) использованием теплоты отходящих продуктов сгорания для подогрева топлива и предварительного подогрева рабочего тела можно улучшить общее использование выделяющейся при сгорании топлива теплоты. Но более перспективным (во всяком случае в паросиловых установках) является использование горячих продуктов сгорания, после того как завершено нагревание основного рабочего тела, в качестве вторичного рабочего тела (как это осуществляется в парогазовых установках) или применение бинарных циклов с использованием в верхнем цикле наиболее подходящего высокотемпературного рабочего тела. Возможно также использовать в качестве головного звена энергетической установки МГД генератор. В этом случае горячие газы сначала поступают в рабочий канал МГД-генератора, где часть кинетической энергии потока преобразуется в электри-  [c.526]

По назначению дозиметрическая аппаратура делится на шесть типов а) приборы, измеряющие дозу внешнего излучения б) приборы для измерения потоков а- и Р-частиц с загрязненных поверхностей в) приборы (обычно карманные) для измерения индивидуальных доз г) приборы для измерения загрязненности воздуха радиоактивными газами и аэрозолями д) приборы для измерения радиоактивности проб воды и пищевых продуктов е) установки для измерения внешнего излучения воздуха. Наиболее широко используются дозиметрические приборы первых трех типов, необходимые при любых видах работ с использованием ядерных излучений.  [c.673]

Использование парогазовых установок повышает к. п. д. электростанций и значительно снижает капитальные затраты на их строительство. Наиболее эффективными парогазовыми установками являются установки с высоконапорными парогенераторами с давлением газов в топке 0,5 МПа и более с отводом отходящих от газовой турбины газов в топку парогенератора. В паровом цикле таких установок можно получить пар Pi = 24,0 МПа и Ti = 853 К с промежуточным перегревом до 838 К. Применение паровой и газовой регенерации значительно повышает экономичность установки, к. п. д. которых может быть доведен до 0,4...0,45 и выше. Эти установки выгодно отличаются от паросиловых и газотурбинных установок тем, что они меньших габаритов, меньше  [c.99]


На установках НТС в результате редуцирования и охлаждения газоконденсатной смеси получают сухой газ и жидкие углеводороды. В качестве устройств для редуцирования давления газа с одновременным его охлаждением используют сопла Лаваля, вихревые трубы (трубы Ранка), турбодетандеры или винтовые детандеры. К схемам НТС, осуществляющим те же процессы, но без затраты пластовой энергии, относятся установки с использованием холодильных машин. Природный или попутный нефтяной газ при давлении 7—4 МПа охлаждается в холодильных машинах до температуры t( = —15- (—30)°С с целью отделения от газа жидких углеводородов и влаги. В установках НТС в основном применяются парокомпрессионные холодильные машины на базе газомотокомпрессоров с единичной мощностью энергопривода компрессора до 2000 кВт при холодопроизводитель-ности Qa = 4900 кВт. Рабочим телом холодильной машины является аммиак или пропан. Перспективны также холодильные машины большой единичной холодопроизводительности, рабочий процесс которых осуществляется за счет утилизации теплоты отходящих газов.  [c.183]

В подобной системе обессеривание угля становится гораздо проще на стадии газифика-цш1, так что продукты сгорания, содержащиеся в выхлопных газах турбины, весьма незначительно загрязняют окружающую среду. Кроме того, использование угля для производства электрического газа содействовало бы экономии запасов нефти и природного газа, а ведь эти виды топлива наиболее часто применяются на электростанциях, работающих в цикле Брайтона. Во-первых, общий КПД комбинированного цикла может быть несколько выше, чем КПД установки с использованием одной лишь паровой турбины. Это объясняется более высокими рабочими температурами, которые используются в газовой турбине по сравнению с паровой турбиной. В результате  [c.228]

Все разобранные схемы составлены применительно к использованию турбомашин, но с достаточным основанием могут характеризовать и установки с поршневыми двигателями или генераторами газа. Так, в схеме по рис. 1-3, е паросиловая часть установки сохранит все свои характеристики, если утилизируемые отработавшие газы будут поступать не из ГТУ, а из глушителя двигателя внутреннего сгорания. Установка с использованием в паровой турбине пара, генерируемого в зарубашечном пространстве дизеля, совершает термодинамический цикл, сходный с циклом парогазовых установок по схеме рис. 1-3, б. Камеру сгорания в схемах с предвключенными газовыми турбинами (рис. 1-3, г) можно заменить свободнопоршневыми генераторами газа.  [c.24]

На фиг. 135 дана схема дивелвной установки с использованием как тепла воды " (частично для использования нагретой воды при 60° для производства, частично для питания утилизационного котла), так и тепла отходящих газов (для получения пара в утилизационном котле).  [c.185]

Маниным и Ковалкиным разработаны метод и установка с использованием хроматографического анализа для оценки встречной проницаемости газов и жидкостей через полимерные мембраны. С помощью этого метода можно одновременно и независимо определять количество проникающих через полимерную мембрану навстречу друг друту газа и жидкости. Для исключения влияния растворимости газа в жидкости конструкция диффузионного прибора предусматривает ведение эксперимента с переменным уровнем жидкости над полимерной мембраной и с постоянным объемом газовой фазы над ней.  [c.36]

Рис. 1-18. Газоконтактная установка с использованием теплоты уходящих газов котла. Рис. 1-18. Газоконтактная установка с использованием теплоты уходящих газов котла.
Опытно-промышленная установка с использованием теплоты уходящих газов котла на 240 м /сут показана на рис. 1-18. В установке исходная вода в количестве 210 т/ч насосами прокачивается через поверхности конденсаторов пяти ступеней мгновенного вскипания / и с температурой 49°С поступает в контактный экономайзер 2. Уходящие газы котла 4, имеющие температуру 320°С, нагревают исходную воду до 6б" С и, охладившись до 60°С, выбрасываются в дымовую трубу. Затем вода проходит охладитель эжекторов 3, поступает в первую ступень мгновенного Ескипания, в которой поддерживается давление 0,2 кгс/см2, и далее через гидрозатворы последовательно протекает через все остальные ступени с давлением соответственно 0,15 0,11 0,08 0,06 кгс/см . Вторичный пар охлаждается конденсаторами ступеней с последовательным перепуском конденсата, который забирается насосами из последней ступени установки. Технико-экономические расчеты показали, что при использовании теплоты уходящих газов современных котлов можно выработать такое количество пресной воды, которое будет равно 7% паропроизводительности котла при ее себестоимости 23—25 коп/м . Получаемая вода 52  [c.52]

Большая часть тепла, получаемая в форме холодного СО при реакции между углем и воздухом, составляет только 10300/14700= = 707о тепла, первоначально заключавшегося в угле. Из 30% тепла, выделяющегося в процессе реакции, большая часть покидает установку с уходящими газами и определяется их энтальпией. Тепла, генерируемого в газогенераторной установке в процессе реакции при образовании СО, достаточно для такого повышения температуры, чтобы нарушить нормальную работу установки из-за избыточного образования шлака. Для того чтобы охладить газогенератор и утилизировать избыточное тепло, вместе с воздухом в установку вводится пар, и при благоприятных условиях идет следующая реакция С+НгО—>-С0+Н2. На каждый фунт углерода топлива, вступающего в реакцию, у горячего угля отнимается 4300 БТЕ (4,5-10 Дж). Путем использования паровоздушной смеси, составленной в определенной пропорции, можно абсорбировать избыточное тепло, генерируемое в установке, и добиться поддержания в ней практически постоянной температуры.  [c.193]


Цикл газотурбинной установки с использованием тепла отходящих из регенератора газов для охлаждения всасываемого компрессором воздуха показанна рис. 5-13.  [c.132]

Полученные привыделении водорода фракции газа могут быть использованы также как исходное сырье для других химических производств, например этиленовая фракция— для синтеза этилового спирта или этиленгликоля и т. п. (см. Этилен). Установки с использованием этилена в качестве сырья имеются в настоящее время на некоторых заводах во Франции.  [c.246]

Экспериментальные установки будем классифицировать следующим образом а) разомкнутые, без циркуляции компонентов [Л. 358а] б) полуразомкнутые, с возвратом либо твердых частиц, либо газа при накапливании улавливаемых частиц [Л. 18, 229, 309, 380, 36] и в) замкнутые, с возвратом всего дисперсного потока либо )аздельно обоих компонентов в теплообменный участок (Л. 309, 380]. 1ри этом первый тип установок наиболее конструктивно прост, но требует больших запасов сыпучей насадки и не пригоден при использовании газов, выброс которых недопустим (например, гелия, фреона и т. п.). Третий тип установок позволяет достаточно просто достигать высоких концентраций в контуре и не требует наличия осади-телей или циклонов. Однако здесь необходим пропуск дисперсного потока через нагнетатель, что ограничивает возможности его выбора и создает значительные трудности в измерении расходов газа и частиц.  [c.216]

Использование парогазовых установок улучшает тепловую схему электростанции и значительно снижает капитальные затраты при ее строительстве. Наиболее эффективными парога-ювыми установками являются установки с высоконапорш.тш парогенераторами и со сбросом отходящих газов газовой турбины в топки котельных агрегатов. В паровой части таких установок можно применять пар с давлением до 240 бар и температурой до 580 ° С с промежуточным перегревом до 565° С. Применение паровой и газовой регенерации значительно повышает экономичность установок, при этом к. п. д. электростанции может быть равен 0,4—0,45 и выше.  [c.324]

Более современные ожижители воздуха. Подробное описание более современных ожижителей воздуха по схеме Линде выходит за рамки настоящей работы. Можно лишь указать, что они основываются на схеме с двумя ступенями давлений, приведенной на фиг. 55. Однако в настоящее время основной задачей является производство не жидкого воздуха, а чистого жидкого кислорода или чистого жидкого азота, которые получаются путем низкотемпературной ректификации воздуха. Небольшие воздухоразделительные установки, пригодные для лабораторий, разработаны с использованием холодильного цикла, основанного на адиабатическом расширении сжатого газа (см. разделы 6 и 7), как, например, схелхы Клода—Гейландта (и. 32) и схемы низкого давления (и, 36 п 37).  [c.67]

В настоящее время наибольшее научно-техническое развитие получил магнитогидродинамический метод (МГД-,метод) прямого преобразования энергии. Идея этого метода основана на том, что при пересечении проводником линий индукции в нем возникает ЭДС. В МГД-генераторе таким проводником является электропроводящий газ (плазма). Высокотемпературный газ (2500— 3000°С) в МГД-генераторе выполняет двойную роль в сопле перед генератором внутренняя энергия газа преобразуется в кинетическую энергию noTOiKa, т. е. газ -является термодинамическим рабочим телом, а в генераторе кинетическая энергия потока преобразуется в электрическую энергию, т. е. газ выполняет роль силовой обмотки электрической машины. Можно поэтому говорить, что МГД-гбнератор представляет собой совмещенную с тепловым двигателем электрическую машину, а термодинамический цикл энергетической установки с МГД-генератором принципиально ничем не отличается от известных циклов газо- и паротурбинных установок. Использование высокой температуры рабочего вещества (которую вполне выдерживают неподвижные части генератора) приводит к генерации электроэнергии МГД-методом с КПД до 50—60%.  [c.69]

Цикл энергетической установки с МГД-генератором. Ранее отмечалось, что применение МГД-генераторов наиболее целесообразно (если опыт подтвердит эффективность использования МГД-геиераторов вообще) в качестве головного звена обычной энергетической (в частности, паросиловой) установки. Это сопряжено с тем, что рабочие температуры в газовом (или, как говорят еще, плазменном) МГД-генераторе составляют 2000" С н более. При температурах ниже этой величины электропроводность газа слишком низка для осуществления процесса.  [c.612]

В качестве примера рассмотрим принципиальную схему (рис. 12.6) холодильного цикла с многокомпонентным хладагентом, разработанную французской фирмой ТЕХНИП. Схема цикла реализована с использованием парокомпрессионной холодильной машины. Смешанный хладагент сжимается в компрессоре от давления 0,15 до 3,73 МПа, последовательно охлаждается, сепарируется, а затем дросселируется до 0,5 МПа. После использования холода при давлении 0,5 МПа смесь хладагента подается в промежуточную ступень компрессора. Вторая ступень — дросселирование хладагента до давления 0,15 МПа — обеспечивает охлаждение и сжижение природного газа, поступающего на установку. Испарившийся при давлении 0,15 МПа хладагент подается в первую ступень компрессора, и цикл замыкается. Давление природного газа на входе в установку сжижения равно 4 МПа.  [c.184]

Температуры теплоотдатчика и рабочего тела, например в паросиловых установках, существепно различны, так как ни свойства рабочего тела, ни свойства конструкционных материалов не позволяют довести температуру рабочего процесса до температуры продуктов сгорания топлива. Применение жаропрочных конструкционных материалов может несколько уменьшить эту разность температур такого же результата можно частично достичь при переходе на высокие давления рабочего тела в цикле (применительно к воде это будут закритические давления). Использование теплоты отходящих продуктов сгорания для подогрева топлива и предварительного подогрева рабочего тела дает возможность повысить эффективность применения выделяющейся при сгорании топлива теплоты. Перспективно (во всяком случае в паросиловых установках) использование горячих продуктов сгорания, после того как с их помощью завершен нагрев основного рабочего тела, в качестве вторичного рабочего тела в дополнительном цикле (как это осуществляется в парогазовых установках) нли применение бинарных циклов с использованием в верхнем цикле оптимального высокотемпературного рабочего тела. Можно также использовать в качестве головного звена энергетической установки МГД-генератор. В этом случае горячие газы вначале поступают в рабочий канал МГД-генератора, где кинетическая энергия потока преобразуется в электрическую энергию. На выходе из канала газы направляются в основную энергетическую установку, где отдают теплоту рабочему телу. Кроме использования МГД-генератора возможно создание термоэмиссиоиной надстройки . Целесообразным представляется также использование высоких температур продуктов сгорания для осуществления высокотемпературных химических реакций, в частности для получения водорода из водяного пара.  [c.516]

Входные линии установок по подготовке газа обычно подвергаются защите ингибитором, применяемым для защиты оборудования добычи газа, и дополнительный ввод ингибитора здесь предусматривается только при выявлении активизации коррозионных процессов. Как правило, ингибиторный раствор постоянно вводят в технологическую линию установок по подготовке газа после сепараторов первой ступени и периодически — в выходные линии. Кроме того, на установках по подготовке газа практикуется применение других специфических методов ингибиторной защиты. Это периодическая (1—2 раза в полугодие) закачка в аппараты и емкости после их отглушения и снятия давления концентрированного ингибиторного раствора, выдержка его в течение не более 1 ч для создания устойчивой защитной пленки и последующего слива. Возможно применение в местах усиленной коррозии, обычно в застойных зонах, обработки в период планово-предупредительных ремонтов концентрированными ингибиторами с пониженными технологическими (низкой растворимостью в водных углеводородных растворах и повышенной вязкостью) и повышенными защитными свойствами или обычно применяемыми ингибиторами в комплексе с загустителями. При осушке газа диэтиленгликолем возможно использование периодического (ежедневного) в небольших количествах (до 10 л) ввода концентрированного ингибитора в котел регенерации. Для предотвращения растрескивания при очистке газа рекомендуется периодический ввод ингибитора в оборудование, контактирующее с регенерированными растворами этаноламинов.  [c.180]


Газотурбинные установки широко применяются в различных отраслях народного хозяйства. Газовые турбины являются основным агрегатом современных авиационных турбореактивных двигателей, используются в энергетических системах для покрытия максимальных нагрузок (они быстро запускаются и набирают нагрузку), в приводах нагнетателей на компрессорных станциях магистральных газо- и нефтепроводов, работают в качестве главных и форсажных двигателей на судах морского флота. Газотурбинные установки весьма перспективны на железнодорожном транспорте, где их малые размеры и маневренность создают большие преимущества. Особое место занимают они в технологических схемах многих химических и металлургических производств (энерготех-НО ЛОГИческие установки), где применяются в приводах различного рода нагнетателей с использованием как рабочего тела продуктов или отходов самих производств.  [c.117]


Смотреть страницы где упоминается термин Установки с использованием газов : [c.185]    [c.111]    [c.252]    [c.130]    [c.144]    [c.374]    [c.236]    [c.95]    [c.156]    [c.328]   
Смотреть главы в:

Неводяные пары в энергомашиностроении  -> Установки с использованием газов



ПОИСК



Использование теплоты отходящих газов теплотехнологических установок

Повышение экономичности и эксплуатационной надежности установок утилизации промышленных дымовых газов с использованием волновых машин

Реальные циклы простейшей газотурбинной установки без использования и с использованием тепла отработавших газов

Установка для ожижения газов с использованием детандеров

Установки для использования СИ

Установки для использования избыточного давления отработавших газов

Установки для ожижения газов путем использования только эффекта Джоуля—Томсона

Установки для регенеративного использования теплоты отходящих газов

Установки использования сжиженных газов



© 2025 Mash-xxl.info Реклама на сайте