Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газовый термометр и температурная шкала

ГАЗОВЫЙ ТЕРМОМЕТР И ТЕМПЕРАТУРНАЯ ШКАЛА  [c.79]

Историю термометрии с начала 18 столетия можно проследить по двум направлениям, родоначальниками которых были Фаренгейт и Амонтон. С одной стороны, разрабатываются все более точные практические шкалы, основанные на произвольных фиксированных точках, такие, как шкалы Фаренгейта, Цельсия и Реомюра, при одновременном создании все более совершенных практических термометров. С другой стороны, наблюдается параллельное развитие газовой термометрии и термодинамики. Первый путь привел (через ртутные термометры) к появлению платиновых термометров сопротивления, к работам Каллендара и наконец в конце 19 в. к платино-платинородиевой термопаре Шателье. В гл. 2 будет показано, что кульминационной точкой в практической термометрии явилось принятие Международной температурной шкалы 1927 г. (МТШ-27). Следуя по пути развития газовой термометрии, мы придем к работам Шарля, Дальтона, Гей-Люссака ш Реньо о свойствах газов, из которых следуют заключения о том, что все газы имеют почти одинаковый коэффициент объемного расширения. Это послужило ключом к последующему пониманию того, что газ может служить приближением к идеальному рабочему веществу для термометра и что можно создать  [c.32]


В этой главе, посвященной практическим вопросам измерения температуры, прежде всего рассматриваются три основных метода первичной термометрии. Это — классическая газовая термометрия, акустическая газовая термометрия и шумовая термометрия. Затем выясняется роль магнитной термометрии. Магнитная термометрия в обсуждаемом случае не применяется в качестве первичного метода, однако она тесно связана с первичной термометрией и поэтому ее роль выясняется ниже. То же самое можно сказать о газовых термометрах, основанных на коэффициенте преломления и диэлектрической проницаемости как тот, так и другой могут быть использованы в качестве интерполяционного прибора. Термометрия, основанная на определении характеристик теплового излучения, рассматривается отдельно в гл. 7. В данной главе в основном обсуждаются принципиальные основы каждого из методов, а не результаты измерений, поскольку последние были представлены в гл. 2, где говорилось о температурных шкалах.  [c.76]

Международная практическая температурная шкала основана на шести реперных точках — температурах равновесия, определенных с помощью газовых термометров и выраженных в термодинамической стоградусной шкале температуры (табл.  [c.248]

В интервале от 10°К до кислородной точки для измерения температуры чаще всего применяются также платиновые термометры сопротивления . Однако температурный коэффициент платины в этой области очень сильно зависит от ничтожных примесей и для разных марок платины он может быть различным. Поэтому выразить зависимость сопротивления платины от температуры формулой, общей для всех термометров, не удается, и температурная шкала от 10°К до кислородной точки устанавливается путем непосредственной градуировки платинового термометра сопротивления или группы платиновых термометров, принятой в качестве эталона, по газовому термометру. В результате градуировки составляются таблицы значений Яг эталонного термометра в зависимости от температуры нли, чаще, таблицы зависимости W = от температуры. Сверка эталонных платино-  [c.85]

Измерение изменения температуры в результате теплообмена является важнейшей задачей калориметрии. Методы измерения температуры основаны на регистрации эффектов ее проявления, например путем определения изменения объема, сопротивления, спектрального диапазона излучения света, контактной разности потенциалов металлов. При всех этих измерениях принципиальное значение имеет решение вопроса о нулевой точке отсчета температуры и температурной шкале. Абсолютная термодинамическая температурная шкала (шкала Кельвина) тождественна шкале газового термометра (см. ниже), в котором термометрическое вещество - газ подчиняется законам идеальных газов. Однако измерение температуры по этой шкале сопряжено со значительными экспериментальными трудностями. Применяемые в настоящее время приборы для измерения температуры проградуированы в единицах Международной практической температурной шкалы.  [c.19]


Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]

В связи с трудностями измерения температуры газовым термометром в практике используется более простая Международная практическая температурная шкала, которая может быть градуирована в кельвинах (К) и в градусах Цельсия (°С).  [c.8]

Вместе с тем известно, что термодинамическая шкала температур совпадает со шкалой идеального газового термометра, если положить принцип линейности в построении температурной шкалы и интервал от точки таяния льда до точки кипения воды при нормальном атмосферном давлении разделить на 100 равных частей, названных градусами Цельсия.  [c.22]

В 1927 г. была принята Международная температурная шкала (МТШ-27), основанная на шести постоянных и воспроизводимых реперных точках. Значения температур в реперных точках определены с помош,ью газовых термометров с учетом поправок на отклонение газа от идеального состояния. Международная температурная шкала была пересмотрена в 1948 г. (МТШ-48) и в 1968 г. (МТШ-68) с целью внесения в нее некоторых уточнений, полученных в результате экспериментальных исследований, и расширения области измерения низких температур вплоть до температуры, соответствующей тройной точке водорода.  [c.22]

Однако пользование газовым термометром представляет большие практически неудобства, поэтому бьшо выбрано несколько постоянных опорных точек, воспроизведение которых в лабораторных условиях не составляет большого труда. Одна из этих точек задается самим определением термодинамической шкалы — это тройная точка воды, которой приписана неизменная температура 273,16 К. Остальные точки установлены на основании как можно более тщательных измерений. Все эти точки представляют собой температуры фазовых переходов разли шых веществ. На основе измерения температур этих точек в 1968 г. установлена Международная практическая температурная шкала ). Поскольку из.мерения по этой шкале не могут гарантировать абсолютно точного совпадения с термодинамической шкалой, температурам по шкалам Кельвина и Цельсия присвоены символы T es и / в. числе опорных точек имеются тройные точки водорода (T es = 13,81 К) и воды (Гб 8 = 573,16 К) и ряд точек равновесия двух фаз различных веществ. Значения опорных постоянных точек Международной практической температурной шкалы приведены в приложении XII.  [c.193]

Международная температурная шкала введена в СССР с 1 октября 1934 г. Эта шкала построена по газовому термометру. За единицу измерения температуры в международной системе единиц (СИ) принят градус Кельвина — К, шкала совпадает со шкалой Цельсия в точках 0° и 100°.  [c.68]


В качестве реперных точек при построении различных температурных шкал использовались или используются (помимо упомянутых выше точек плавления льда и кипения воды при атмосферном давлении), например, так называемая тройная точка воды, точки затвердевания сурьмы, серы, цинка, золота и другие точки. Численные значения температуры, соответствующие каждой реперной точке, строго установлены с помощью газового термометра (как уже отмечалось ранее, термодинамическая шкала температур — это было показано еще Кельвином — нуждается в одной реперной точке).  [c.76]

В заключение упомянем об одном интересном применении уравнения Клапейрона— Клаузиуса. Как отмечалось в 3-4, чрезвычайно важной задачей является введение поправок к любой эмпирической (практической) температурной шкале для приведения ее к термодинамической шкале температур, т. е. для построения термодинамической шкалы по данной конкретной эмпирической температурной шкале (например, по шкале газового термометра). В гл. 3 было приведено уравнение, дающее величины поправок к международной практической шкале температур для приведения ее к термодинамической шкапе. Но как были определены сами эти поправки Для определения этих поправок, т. е. раз. ницы между температурами по термодинамической (Г) и практической (Т ) шкалами или, иными словами, зависимости T=f (Т ), существуют разные методы. Один из них основан на использовании уравнения Клапейрона—Клаузиуса.  [c.144]

В 1873 г. Д. И. Менделеев высказал аналогичную мысль о возможности построения абсолютной температурной шкалы с одной постоянной точкой [1]. Он предложил построить шкалу, воспроизводимую с помош,ью газового термометра, приняв за исходную точку водород, находящийся под давлением в 1000 граммов на квадратный сантиметр при температуре плавления льда. Размер градуса в такой шкале (Д. И. Менделеев назвал его метрическим градусом ) определяется таким повышением температуры, которое увеличивает давленпе в газовом термометре на 1 грамм на квадратный сантиметр. Однако Д. И. Менделеев считал возможным разработать и другие метрические системы температур .  [c.68]

Теоретической основой построения термодинамической температурной шкалы является обратимый цикл Карно в тепловой системе. Идеальная тепловая машина, работающая по циклу Карно, неосуществима, а измерения термодинамической температуры с помощью газового термометра требуют сложного оборудования и трудны экспериментально, поэтому VII Генеральной конференцией по мерам и весам (1927 г.) принята для практических измерений Международная практическая температурная шкала. IX Генеральная конференция утвердила уточненное Положение о Международной практической температурной шкале 1948 г. , а XI Генеральная конференция приняла новое Положение о Международной практической температурной шкале 1948 г. Редакция 1960 г. [2]. В этом Положении говорится  [c.69]

В начале XIX в. в поисках абсолютного метрологического прибора вернулись к идее газового термометра. Открытые к тому времени законы Гей-Люссака и Шарля позволяли предполагать, что в газовых термометрах показание не будет зависеть от вида газового заполнения. Однако при дальнейшем уточнении методов измерения в газах были обнаружены существенные индивидуальные отклонения. Тщательные исследования французского физика Реньо показали, что коэффициенты расширения газов зависят от плотности и степени удаления по температуре от состояния сжижения. Повышение температуры и снижение давления приближают газы к идеальным. Так, при 320 °С и нормальном давлении Реньо не удалось обнаружить разницы в показаниях газовых термометров, заполненных водородом, воздухом и углекислым газом. В подобных условиях сернистый газ отличался от водорода не только значением коэффициента, но и непостоянством этой величины. Реньо установил, что с понижением давления это различие становится менее заметным. Таким образом, деление температурной шкалы не получило желательной обоснованности вплоть до конца XIX в.  [c.12]

В 1848 г. английский физик Томсон (Кельвин) предложил выбрать градус температурной шкалы таким образом, чтобы в его пределах эффективность идеальной тепловой машины была одинаковой, т. е. чтобы значение температуры принималось пропорциональным значению функции Карно. Такая температура была бы объективным мерилом эффективности тепловой энергии. Проведенные на основании экспериментальных данных Реньо расчеты упругости водяного пара дали температурную шкалу, настолько отличавшуюся от привычных шкал газовых и жидкостных термометров, что она не получила распространения. В дальнейшем Томсон обратил внимание на то, что привычная температура достаточно близко следует за величиной, обратной функ-  [c.12]

В качестве опорных точек для построения практической шкалы были выбраны средние значения температур фазовых переходов, полученные, однако, по недостаточно надежным данным. Эти значения могли существенно отличаться от действительных термодинамических температур. Были выбраны также приборы для интерполирования между опорными точками и разработаны способы реализации таких приборов. Наконец, были согласованы методы и на их основе созданы приборы, позволяющие расширить температурную шкалу за пределы рабочего диапазона газовых термометров.  [c.24]

Одной из самых употребительных температурных шкал была до недавнего времени так называемая газовая температура. В этом случае термометром служит газ, достаточно разреженный и находящийся в постоянном объеме, а температура измеряется его давлением  [c.40]


Для осуществления термодинамической шкалы от 4° К до точки затвердевания золота в принципе также может быть использован не только газовый термометр. Кроме законов идеальных газов, законов излучения и закона Кюри имеется еще ряд.физических законов, позволяющих установить зависимость между термодинамической температурой и некоторыми физическими величинами, которые могут быть использованы в качестве термометрических параметров. Такими термометрическими параметрами могут быть, например, скорость распространения звука в идеальном газе, интенсивность электрических флуктуаций и некоторые др. В последнее время термометры, основанные на измерении этих величин, изучаются в СССР и во многих других странах и, по-видимому, найдут практическое применение при осуществлении термодинамической температурной шкалы, по крайней мере в некоторых температурных областях. Однако в настоящее время газовый термометр является незаменимым инструментом в практической термометрии, и установление термодинамической температурной шкалы во всей температурной области, где газовый термометр может быть применен, производится посредством газового термометра.  [c.36]

Принцип построения Международной практической температурной шкалы состоит в следующем. С помощью газового термометра определяются термодинамические температуры нескольких постоянных точек шкалы, называемых первичными, ими являются температуры равновесия между двумя фазами чистого вещества при нормальном атмосферном давлении, или же температуры сосуществования трех фаз (тройные точки). Значения термодинамических температур первичных постоянных точек шкалы (кроме тройной точки воды) находят тщательными измерениями, проводящимися независимо друг от друга в разных странах. Из результатов этих измерений выбираются наиболее надежные, и на основании их постоянным точкам шкалы приписываются строго определенные температуры. Эти точки являются опорными (реперными) при построении шкалы.  [c.42]

Благодаря принятому способу построения Международная температурная шкала сравнительно легко воспроизводима, и точные измерения температуры по этой шкале широко проводятся в практике научной работы и в технике. Важно отметить, что точность, с которой может быть измерена температура по Международной шкале, значительно выше, чем точность измерения температуры по термодинамической шкале. Это определяется высокой воспроизводимостью показаний термометров, служащих для измерения температуры в Международной практической шкале, значительно превышающей воспроизводимость газовых термометров.  [c.43]

В последние два десятилетия 19 в. было выполнено много измерений с газовым термометром, в том числе при температурах выше 600 °С. Были найдены значения ряда точек кипения и затвердевания в основном по показаниям азотного газового термометра постоянного давления. Подробный обзор этих достижений дал в 1899 г. Каллендар на сессии БАРН, где он выступил с предложениями о практической температурной шкале [12]. Каллендар предложил принять платиновый термометр сопротивления, калиброванный в точке замерзания воды и точках кипения воды и серы в качестве основы шкалы. Он предложил также отобрать конкретную партию платиновой проволоки для изготовления термометров, несущих шкалу. Он предложил приблизить эту шкалу к шкале идеального газа, приняв для точки кипения серы результаты измерений с газовым термометром, и назвать ее температурной шкалой Британской ассоциации. Свои предложения Каллендар обосновал проверкой квадратичной формулы разностей между так называемой платиновой температурой и температурами, определяемыми по газовому термометру, которые были ранее найдены в МБМВ Шаппюи и Харкером [15, 35]. Каллендар представил также перечень значений вторичных реперных точек, основанный на его анализе измерений с газовым термометром. Эти числа приведены в табл. 2.1 вместе с принятыми в МПТШ-68.  [c.41]

Это затруднение было преодолено в ревизии температурной шкалы 1968 г., когда единица температуры по практической и термодинамической шкалам была одинаково определена равной 1/273,16 части термодинамической температуры тройной точки воды. Единица получила название кельвин вместо градус Кельвина и обозначение К вместо °К. При таком определении единицы интервал температур между точкой плавления льда и точкой кипения воды может изменять свое значение по результатам более совершенных измерений термодинамической температуры точки кипения. В температурной шкале 1968 г. значение температуры кипения воды было принято точно 100 °С, поскольку не имелось никаких указаний на ошибочность этого значения. Однако новые измерения с газовым термометром и оптическим пирометром, выполненные после 1968 г., показали, что следует предпочесть значение 99,975 °С (см. гл. 3). Тот факт, что новые первичные измерения, опираюшиеся на значение температуры 273,16 К для тройной точки воды, дают значение 99,975 °С для точки кипения воды, означает, что ранние работы с газовым термометром, градуированным в интервале 0°С и 100°С между точкой плавления льда и точкой кипения воды, дали ошибочное значение —273,15 °С для абсолютного нуля температуры. Исправленное значение составляет —273,22 °С.  [c.50]

Измерение высоких температур газовым термометром и внесение поправок по фиксированным точкам на шкале идеального газа становятся очень затруднительными. Выше 1063° Международная температурная шкала определена по формуле излучения Планка (глава 8) постоянная Сг в формуле имеет значение 1,438 см-град. Метод, с помощью которого получена температурная шкала в этой области, будет описан ниже, после рассмотрения законов излучения и их применения в оптической пирометрии. Однако ib большинстве опубликованных рабог дается температура по Международной шкале 1927 г. В ней температуры выше 1063° определены по формуле излучения Вина (удовлетворительное приближение к формуле Пл1анка установлено экспериментально в широком интервале температур) однако в этом случае постоянная Сг имеет значение 1,432 см- град. Значение Сг было выбрано для воспроизведения газовой шкалы с возможно большей точностью последние работы показали значительную ошибку ее определения, и в 1941 г. Бирж [49] установил наиболее вероятное значение 1,43848 см-град. Бирден и Вате [50] указали наиболее вероятное значение 1,43870 см-град. Таким образом, все международные температурные шкалы выше 1063°, применявшиеся до 1949 г., несколько отличаются от истинной газовой температурной шкалы. Фиксированные точки для температур от 1063° и выше приведены в таб1л. 6.  [c.94]

Для диапазона температур от 13,81 до 6300 К в 1968 г. была установлена Международная практическая температурная шкала МПТШ-68, основанная на ряде воспроизводимых равновесных состояний различных веществ, которым приписаны определенные значения температур. Эти значения температур были определены с помощью газовых термометров по термодинамической шкале. Однако полученные разными авторами значения температур для одних и тех же фазовых переходов значительно различались вследствие больших погрешностей,, присущих газовым термометрам. Поэтому для каждой точки равновесия выбранных фазовых переходов были законодательно приняты наиболее достоверные (точные) значения, приведенные в табл. 3 и образующие в своей совокупности основные реперные точки шкалы МПТШ-68.  [c.61]


Кроме того, создание газового термометра и работа с ним представляет обширный комплекс разнообразных и тонких исследований, которые под силу только первоклассным исследовательским институтам, и поэтому количество газовых термометров весьма ограничено. Наконец, газовые термометры не обес-г(ечивают достаточно надежного измерения температуры. Погрешность единичного измерения температуры газовым термометром получается слишком большой. Все эти причины привели к возникновению необходимости разработать методы осуществления такой шкалы температур, которая практически совпадала бы с термодинамической, позволяла бы расширить последнюю в оОласть очень высоких температур и отличалась бы удобством и надежностью воспроизведения. Так возникла Международная температурная шкала .  [c.32]

Из краткого изложения содержания Положения о международной температурной шкале вытекает, что эта шкала обладает достаточной простотой воспроизведения. Кроме того, рекомендованные Положением методы обладают значительно большей надежностью, чем измерения температур с помощью газового термометра и, следовательно, международная шкала обладает лучшей воспроизводимостью, чем термодинамическая, осуществляемая газовым термометром. — На 8-й Генеральной конференции в 1933 г. и в 1948 г., на 9-й Генеральной конференции в Положение внесены некоторые изменения. Для температуры затвердевания серебра. предложено яначение 960,8° вместо ранее установленного 960°,5. Воспроизведение участка шкалы выше 1063° С предложено осуществлять не по яриближенной формуле Вина, а по уравнению Плап ка, дающему прекрасное согласование с термодика.мической шкалой.  [c.34]

В дальнейшем с помощью газовых термометров была построена так называемая Международная практическая температурная шкала (МПТШ), легко и точно воспроизводимая и близкая к термодинамической шкале. МПТШ была принята на VII Генеральной конференции по мерам и весам в 1927 г. Это вызывалось необходимостью облегчить измерение температуры с помощью газовой термометрии и унифицировать существующие в разных странах температурные шкалы.  [c.57]

Отмеченные выше результаты работ с магнитными термометрами и газовым термометром НФЛ позволили найти, а затем устранить термодинамическое несоответствие известных температурных шкал по давлению паров Не и Не с температурной шкалой, лежащей выше 13,81 К- Недавно в КОЛ разработаны новые таблицы зависимости давлений насыщенных паров гелия от температуры, соответствующие температурам по ПТШ-76. Представляется весьма вероятным, что новая МПТШ будет иметь своей основой для воспроизведения температур ниже 4,2 К температурную зав-исимость давления паров гелия вплоть до температур порядка 0,5 К. В качестве реперных температур для этого интервала возможно также применение переходов сверхпроводник-нормальный металл в чистых веществах. Однако исследования последних лет показали, что эти устройства требуют чрезвычайно осторожного обращения и приписанные температуры переходов могут оказаться сдвинутыми на величину, превышающую 1 мК- Кроме того, материалы из разных источников обнаруживают различающиеся величины Тс, что затрудняет применение этого способа в МПТШ.  [c.7]

Рис. 2.1. Результаты измерений Шаппюи, показывающие расхождения температурных шкал газовых термометров, заполненных СОг, N2 и Нг. и ртутных термометров Тоннело. Все термометры градуировались в точках льда и кипения воды, интервал между которыми принимался равным 100 С. Рис. 2.1. <a href="/info/8483">Результаты измерений</a> Шаппюи, показывающие расхождения температурных шкал газовых термометров, заполненных СОг, N2 и Нг. и <a href="/info/21610">ртутных термометров</a> Тоннело. Все термометры градуировались в точках льда и кипения воды, интервал между которыми принимался равным 100 С.
Принципиально новые сведения о термодинамической шкале при низких температурах были получены Берри с газовым термометром НФЛ в интервале от 2,6 до 27,1 К [4]. Эти данные были подтверждены при новых измерениях с шумовым термометром до 4,2 К [40], с акустическим термометром от 4,2 до 20К [20] и с новым типом газового термометра [28, 29], где использована температурная зависимость диэлектрической проницаемости. Применив диэлектрический газовый термометр в качестве интерполяционного прибора, Гьюген и Мичел подтвердили данные Берри в интервале от 4,2 до 27 К-Значения низкотемпературных реперных точек установленной Берри шкалы НФЛ-75 приведены в табл. 2.5.  [c.63]

Температуру измеряют различными приборами жидкостными и газовыми термометрами, термоэлектрическими и оптическими пирометрами и т. д. Каждый прибор, используемый для измерения температуры, естественно, должен быть отградиурован в соответствии с установленной температурной шкалой.  [c.8]

Прибором, при помощи которого создана Международная практическая температурная шкала (МПТШ-68), является газовый термометр постоянного объема. Теоретической предпосылкой, позволяющей использовать газовый термометр для измерения температур, является наличие функциональной зависимости между давлением идеального газа, находящегося в сосуде с постоянным объемом, и абсолютной температурой  [c.71]

СвоеобразнЕ)1ми хранителями этой шкалы являются постоянные температуры фазового равновесия между двумя или тремя фазами чистого вещества температуры кипения и затвердевания, температуры тройных точек. При помощи газового термометра тщательно измеряются эти температуры, им придаются численные значения, которые фиксируются в тексте международных практических температурных шкал. В настоящее время действует МПТШ— 68, зафиксированная в нормативных документах [20]. В табл. 3.1 приведены значения основных реперных точек МПТШ—68.  [c.74]

Измерение Н. т. Первичным прибором для измерения термодинамич. темп-ры вплоть до 1 К служит газовый термометр. Др. вариантами первичного терлюметра являются акустич. и шумовой термометры, действие к-рых основано на связи термодинамич. темп-ры соответственно со значением скорости звука в газе и с интенсивностью тепловых флуктуаций напряжения в электрич. цепи. Первичные прецизионные термометры используют в осн. для определения темп-р легко воспроизводимых фазовых равновесий в однокомпонентных системах (т. н. реперных точек), к-рые служат опорными температурными точками Международной практической температурной шкалы (МПТП1-68).  [c.349]

Термодинамическая температурная шкала, осуществляемая с помощью газовых термометров, базировалась на двух основных (реперных) точках температуре равновесия между льдом и водой (точка таяния льда) и температуре равновесия между водой и ее паром при нормальном атмосферном давлении (точка кипения воды). Первой точке условно приписывалась цифра О (точно), а второй — цифра 100 (точно). Интервал температур между этими основными точками делился на 100 равных частей, и одна сотая интервала получила название градуса как единицы измерения термодинамической температуры или масштаба термодинамической температурной шкалы. Из (2.5) при V = onst  [c.19]

Измерим значение какого-либо выбранного нами параметра термометрического вещества в состоянии, когда установилось его тепловое равновесие с тающим льдом. Этим параметром может быть объем, давление, электрическое сопротивление или другое физическое свойство тела. Приведем затем термометрическое вещество в соприкосновение с телом, температуру которого мы хотим определить. Если теперь измерить велич1П1у выбранного параметра термометрического вещества (в состоянии, когда установилось его тепловое равновесие с данным телом), то изменение значения этого параметра определит степень отклонения состояния данного тела от состояния теплового равновесия с тающим льдом. При этом необходимо исключить изменение других параметров. Установленная таким опытным путем мера отклонения состояния тела от состояния теплового равновесия с тающим льдом, находящимся под давленне.м 1 атм, называется эмпирической температурой тела. Она может быть измерена с помощью жидкостных и газовых термометров, термопар, пирометров и других устро11ств. Однако в зависимости от применяемого устройства для определенного температурного состояния тела получаются, вообще говоря, различные значения температуры, так как в основу ее измерения кладутся различные признаки. Следовательно, необходима такая шкала температур, с помощью которой можно было бы для определенного температурного состояния тела получить одно единственное значение температуры. Такой шкалой является термодинамическая, а также тоаде-ственная с ней абсолютная шкала температур Кельвина.  [c.8]


Шкалы газовых термометров меньше различаются между собой, поскольку зависимость как объема, так и давления от температуры для всех газов близка к линейной. Однако эта зависимость строго линейна лишь для газов, находящихся в нереализуемом на практике идеальном состоянии. Что же касается реальных газовых термометров, то все они обнаруживают некоторое расхождение температурных шкал, если их шкалы иосгроены на основе принятой линейной зависимости между объемом (или давлением) и температурой.  [c.26]

Против логарифмической шкалы-нельзя выдвинуть никаких принципиальных возражений. Однако, как видно из табл. 1, значения температуры по этой шкале получаются необычные. Существовавшая в прошлом веке температурная шкала, основанная на газовом водородном термометре, хотя и являлась по существу условной шкалой, тем не менее уже имела длительное применение в н ауке и технике. Эта шкала, лишь незначительно отличающаяся от современной шкалы, была широко распространена и стала привычной. Поэтому вполне естественно, что логарифмическая шкала не могла получить распространения.  [c.30]


Смотреть страницы где упоминается термин Газовый термометр и температурная шкала : [c.36]    [c.39]    [c.49]    [c.51]    [c.61]    [c.82]    [c.349]    [c.62]   
Смотреть главы в:

Практикум по технической термодинамике  -> Газовый термометр и температурная шкала



ПОИСК



Газовый термометр и международная практическая температурная шкала

Температурная шкала

Температурные шкалы-г-см. Шкалы

Температурные шкалы-г-см. Шкалы температурные

Термометр

Термометр газовый

Термометрия

Термометрия газовая

Шкалы

Шкалы термометров



© 2025 Mash-xxl.info Реклама на сайте