Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Радиоактивные изотопы и ядерные излучения

Построены и работают специальные ядерные реакторы с очень высокими потоками нейтронов для физических исследований и для получения трансурановых, элементов. Созданы крупнейшие материаловедческие лаборатории, исследующие поведение расщепляющихся и конструкционных материалов в условиях высокой температуры, радиации и химически агрессивной среды. Построены заводы стабильных изотопов. Все более широкое применение находят ионизирующие излучения. Радиоактивные изотопы и ядерные излучения используются в промышленности (дефектоскопия, автоматизация и др.), медицине (диагностика и лечение), биологии (генетика), сельском хозяйстве (повышение урожайности), химии (органический синтез).  [c.410]


Начатое во второй половине 40-х годов производство источников ядерных излучений уже в 50-х годах составило одну из развитых отраслей атомной промышленности Советского Союза. Высокая эффективность применения изотопов и излучений способствовала их быстрому распространению в практике научных исследований, в промышленности, сельском хозяйстве и медицине. За последние годы радиоизотопные приборы и облучающие установки используются более чем в трех тысячах советских научно-исследовательских, промышленных и медицинских организаций. По оценке Института экономики Академии наук СССР, общая экономия, получаемая народным хозяйством нашей страны в результате использования радиоактивных изотопов и ядерных излучений, превышает 200 млн. руб. в год В 1957 г.  [c.188]

Все более широкое использование находят радиоактивные изотопы и ядерные излучения в медицине для диагностики и лечения различных заболеваний. Свыше полутора десятилетий в лечебных учреждениях Советского Союза применяются препараты радиоактивного йода для распознавания болезней щитовидной железы, изотопы фосфора и натрия — для исследований процессов гемодинамики (движения крови) при поражениях сердечно-сосудистой системы, изотопы йода и инертных газов (радона, ксенона, криптона) — для диагностирования опухолей мозга и пр. За последние годы значительно усовершенствованы и получили распространение в лечебной практике средства лучевой терапии, радиоактивные препараты (местные источники лучевой энергии), используемые для лечения злокачественных опухолей, и гамма-терапевтические облучающие установки глубокого проникающего воздействия (рис. 56), источниками гамма-излучений в которых служат радиоактивные изотопы кобальта-60 и цезия-137.  [c.192]

Радиоактивные изотопы и ядерные излучения получают распространение и в сельском хозяйстве.  [c.192]

Дальнейшее широкое распространение в различных отраслях народного хозяйства Советского Союза получат радиоактивные изотопы и ядерные излучения. Ежегодно в производственную практику будут вводиться многие десятки тысяч приборов радиоактивной дефектоскопии, контроля и автоматического регулирования технологических процессов, бесконтактного измерения плотности жидкостей и пр., аппаратура для геологических скважинных исследований и активационного анализа, установки радиотерапии и т. д. В промышленной и сельскохозяйственной практике найдут применение радиационно-химические методы производства новых материалов с использованием ускорителей заряженных частиц и ядерных реакторов, облучающие установки для предпосевной обработки семян, дезинсекции зерна и стерилизации пищевых продуктов, специальные радиоизотопные источники электроэнергии и т. д. Будет продолжены и развиты теоретические и экспериментальные исследования процессов ядерного синтеза.  [c.196]


Высокая эффективность использования радиоактивных изотопов и ядерных излучений определяется той экономией, которую получают предприятия за счет повышения производительности оборудования, уменьшения числа обслуживающего персонала, уменьшения расхода материалов на изготовление продукции и сокращения брака. Так как промышленные предприятия достигают за счет применения радиоизотопной аппаратуры более высокого качества изготовляемой продукции, это приводит к значительной экономии у потребителей.  [c.75]

РАДИОАКТИВНЫЕ ИЗОТОПЫ И ЯДЕРНЫЕ ИЗЛУЧЕНИЯ  [c.429]

Большая экономия оби (ественного труда и денежных средств (по данным института экономики АН СССР, более двухсот миллионов рублей за 1960 г.) достигается в результате применения для автоматического контроля и регулирования процессов бесконтактных приборов, основанных на использовании радиоактивных изотопов и ядерных излучений. Применение измерителей  [c.124]

Способность ядерных излучений проникать в толщу вещества (с постепенной потерей энергии) широко используется для нужд дефектоскопии, для измерений толщины облучаемых материалов и пр. Под действием излучений возрастает активность катализаторов и, следовательно, увеличивается скорость протекания химических реакций. Под их воздействием изменяются структура и свойства исходных веществ, возникают изменения в основных структурных элементах ядер живых клеток (хромосомах), происходят разрушение и перестройка биологических комплексов и т. д. Применение стабильных и радиоактивных изотопов — источников ядерных излучений — в исследовательской и производственной практике стало эффективным методом исследования и технологического контроля с помощью изотопных индикаторов (метод меченых атомов). Использование энергии распада радиоактивных изотопов определило возможность получения небольших количеств электроэнергии посредством полупроводниковых преобразователей.  [c.188]

Наряду с постоянно поддерживаемыми и развиваемыми научными контактами последовательно расширяется международное сотрудничество СССР в различных областях атомной техники. С 1955 г., выполняя двусторонние правительственные соглашения, заключенные с социалистическими странами, с Францией, Великобританией, Италией, США, Индией, Индонезией, Афганистаном, Ираком, Объединенной Арабской Республикой и другими государствами. Советский Союз участвует в обмене информационными, консультативными и проектными материалами по проблемам народнохозяйственного использования атомной энергии. В соответствии с этими соглашениями советские промышленные предприятия поставляют многим зарубежным странам исследовательские ядерные реакторы и ускорители элементарных частиц, облучающие установки и радиоактивные изотопы — источники ядерных излучений. Советские специалисты участвуют в монтаже и наладке поставляемого оборудования. В советских высших учебных заведениях ведется подготовка национальных кадров инженеров-физиков широкого профиля для ряда государств. При непосредственной помощи СССР построены научно-исследовательские атомные центры в Болгарии, Румынии, Венгрии, Чехословакии, Польше, ГДР, КНР, КНДР, Югославии и Объединенной Арабской Республике. С участием СССР в 1966 г. завершено строительство и ввод в строй действующих энергетических предприятий ГДР атомной электростанции электрической мощностью 70 тыс. кет. При техническом содействии СССР осуществляется строительство первой атомной электростанции электрической мощностью 150 тыс. кет в Чехословакии. Заключены соглашения по сооружению аналогичных атомных электростанций в других странах (Болгарии, Венгрии и др.).  [c.194]

Таким образом, важнейшим направлением использования атомной энергии в мирных целях, дающим возможность при минимальных капитальных затратах в короткие сроки получать значительный экономический эффект, является применение радиоактивных изотопов и источников ядерных излучений в научных исследованиях и промышленном производстве.  [c.75]


Результаты научных исследований и практический опыт показывают, что радиоактивные изотопы и источники ядерных излучений в сочетании с другими средствами автоматизации позволяют осуществить комплексную автоматизацию технологических процессов на высоком научно-техническом уровне. Объясняется это тем, что ряд процессов контроля и управления производством можно осуществлять с высокой степенью точности только с помощью изотопов. Например, с помощью изотопов можно обеспечить точное определение толщины листовых материалов, бесконтактное определение и поддержание уровня в закрытых сосудах, дистанционный контроль плотности растворов и пульп и т. д.  [c.76]

Определение скорости износа методом радиоактивных изотопов позволяет изучать процесс износа в динамике [4], [18]. При этом в исследуемый материал детали, износ которой хотят изучить, вводится радиоактивный изотоп. По мере износа вместе с продуктами износа попадает пропорциональное и.м количество атомов радиоактивного изотопа по интенсивности излучения этого изотопа в пробе масла можно судить о количестве металла, попавшего в масло за определенный период времени. Если имеется готовая деталь, ее износ можно изучить, запрессовывая нормально к поверхности трения вставки в виде проволоки небольшого диаметра из сплава, содержащего радиоактивный изотоп. При наличии готовой детали ее можно сделать радиоактивной путем облучения в ядерном реакторе. Если используются детали, имеющие на поверхности трения специальные покрытия, то в материал покрытия вводится радиоактивный изотоп.  [c.301]

Развитие ядерной техники, применения в технике радиоактивных изотопов и пр. вызвали повышенный интерес к поведению электроизоляционных материалов в условиях весьма жестких излучений (а-, 3- и улучи, потоки электронов и пр.) от ядерных реакторов, ускорителей элементарных частиц, радиоактивных элементов и др. Такие излучения могут оказывать весьма заметное воздействие на многие материалы. При этом могут происходить как изменения электрических свойств материалов (например, появление добавочной электропроводности), так и глубокие их физико-химические превращения. Так, органические полимеры могут становиться более твердыми и тугоплавкими (это иногда используется даже для обработки материалов определенной дозой жесткого облучения для повышения их качества пример — облучение полиэтилена для повышения его нагревостойкости), но и более хрупкими  [c.181]

Действие ядерных излучений на вещество в общих чертах состоит из следующих процессов. Во-первых, налетающие частицы, сталкиваясь с электронами, выбивают их, производя в веществе ионизацию (иногда возбуждение) атомов. Во-вторых, налетающие частицы достаточно высоких энергий при неупругом ядерном столкновении с ядрами могут частично разрушать ядра, например, выбивая из них протоны и нейтроны, ведет к появлению в веществе новых изотопов, в том числе новых элементов. Эти новые изотопы часто оказываются радиоактивными. В результате в веществе возникает наведенная активность. В-третьих, при выбивании электронов во многих веществах, особенно органических, могут разрушаться или, наоборот, возникать различные химические связи, что приводит к изменению химической структуры вещества. В-четвертых, при упругих столкновениях налетающих частиц с ядрами атомы вещества выбиваются из своих положений в кристаллической решетке в другие узлы или в междоузлия. В результате в решетке образуются разного рода дефекты, влияющие на различные физические свойства кристаллов.  [c.456]

В заключение рассмотрим воздействие космического излучения на атмосферу. В процессе генерации и поглощения ядерно-актив-ной компоненты в верхних слоях атмосферы происходят различные ядерные реакции. Благодаря этим реакциям в атмосфере, во-первых, поддерживается некоторое равновесное содержание радиоактивных изотопов,таких, как Н , С , Ве , S , i . В частности, только за счет космического излучения в земной воде концентрация тяжелого изотопа водорода — трития — поддерживается на уровне 10 %. Во-вторых, происходит накопление стабильных изотопов. Для примера укажем, что за время существования Земли 4-10 лет) космическое излучение увеличило распространенность изотопа лития Li на 0,03%, т. е. на величину, вполне измеримую современными масс-спектроскопическими методами.  [c.646]

В предшествующем параграфе мы видели, что ядерные излучения оказывают разрушающее действие на организм человека. Поэтому при работе с любыми источниками радиации (радиоактивные изотопы, ускорители, реакторы, космические корабли и т. д.) неизбежно встает вопрос о радиационной защите всех людей, могу-  [c.671]

Всего три десятилетия отделяют наше время от времени открытия искусственной радиоактивности. Последние 15—20 лет ведется строительство ядерных реакторов и ускорителей заряженных частиц. Значительные достижения в этой области и успехи радиохимии обусловили быстрое распространение установок для использования ядерных излучений, в частности осколочных радиоактивных элементов (изотопов) в различных областях научных исследований и во многих отраслях народного хозяйства.  [c.188]

Для сферы использования источников ядерных излучений радиоактивных и стабильных изотопов характерно распространение изотопной производственной технологии, методов радиометрии при разведке и разработке залежей полезных ископаемых, радиоактивных средств контроля и регулирования технологических процессов, облучающих установок в лечебной практике, метода меченых атомов в различных исследованиях и т. д.  [c.195]

Книга не претендует на исчерпывающее изложение вопросов техники использования радиоактивных изотопов, ее задача не в этом. Довольно большое количество литературы по ядерной физике позволяет каждому желающему разобраться во всех теоретических вопросах, связанных с использованием изотопов. Однако для более глубокого понимания экономики промышленного применения радиоактивных методов контроля и управления процессами производства читатель должен иметь достаточные представления об этой технике. Поэтому в третьей главе рассмотрены физические основы применения радиоактивных изотопов в машиностроительной и металлообрабатывающей отраслях промышленности (основные свойства излучений, получение искусственных радиоактивных изотопов, а также основные методы обнаружения и регистрации ионизирующих излучений). В этой же главе освещены общие вопросы экономики применения радиоактивных изотопов.  [c.6]


Конструкционные материалы. К конструкционным материалам, применяемым в ядерных реакторах, предъявляется ряд особых требований. Кроме прочности и жаропрочности, коррозионной стойкости, сопротивляемости разрушению от излучения, защиты от продуктов деления, отсутствия элементов, образующих стойкие радиоактивные, изотопы, теплопроводности и высокой температуры плавления, очень важной является их ядерная характеристика, т. е. способность металлов поглощать тепловые нейтроны, характеризуемая так называемым поперечным сечением захвата их в барнах (табл. 47).  [c.470]

Радиоактивные изотопы и ядерные излучения находят широкое применение а) в научных и технологических исследованиях, имеющих целью раскрытие механизма различных физикохимических процессов, анализ содержания весьма малых примесей в чистых и сверхчистых материалах, исследование механизма и скоростей процессов диффузии, строения вещества и др. б) при проведении геофизических работ, в геологоразведке, при добыче нефти, газа, а также других полезных ископаемых в) при организации контроля, а также механизации и авто-хматизации производства г) для борьбы с вредными последствиями зарядов статического электричества, и т.д.  [c.75]

Ю. . 3 a с л a в с к и Й, Г. И. Ш о р. Радиоиндикаторный контроль эксплуатационных качеств присадок к маслам. Тр. Всесоюзн. совещания по внедрению радиоактивных изотопов и ядерных излучений в народное хозяйство СССР, т. 1. М., Гостоптех-издат, 1961.  [c.191]

Еще более сильное действие на некоторые электроизоляционные материалы, чем лучи видимого света и ультрафиолетовые, оказывают рентгеновые лучи и другие виды жестких, ионизирующих излучений (альфа-, бета- и гамма-лучи, потоки электронов и пр.) от ядерных реакторов, ускорителей элементарных частиц, радиоактивных изотопов и т. п. Такие излучения, все более и более широко применяющиеся в современной технике, могут оказывать весьма заметные воздействия на многие материалы, в том числе электроизоляционные (а также и на другие виды электротехнических материалов, в частности, полупроводниковые). Под действием ионизирующих излучений могут происходить как изменения электрических свойств материалов (например, появление добавочной электропроводности), так и глубокие их физико-химические превращения. Так, органические полимеры могут становиться более твердыми и тугоплавкими (это иногда используется даже для обработки материалов определенной дозой жесткого облучения для повышения их качества пример — облучение полиэтилена для повышения его нагревостойкости), но и более хрупкими и даже полностью разрушаться (пример — политетрафторэтилен), а иногда, наборот, размягчаться и разжижаться.  [c.308]

В качестве источников излучения в Р. х. применяются ускорители (преимущественно электронные), рентгеповские установки, ядерные реакторы, искусственные радиоактивные изотопы и отработанные тепловыделяющие элементы ядерпых реакторов. Наиболее распространены источники из радиоактивного (-о " (Ю —10 г-экв, с макс. мощностью дозы неск. тыс. рентген сек) и электронные ускорители с током  [c.265]

В радиационной химии изучаются реакции под действием электронов, -у-квантов, нейтронов, осколков деления. В качестве источников излучения применяются ускорители (обычно электронные), рентгеновские трубки, ядерные реакторы, радиоактивные изотопы, отработанные тепловыделяющие элементы ядерных реакторов. Наиболее распространены мощные источники из у-актив-ного кобальта атСо и электронные ускорители с током до 10 мА и энергиями до 20 МэВ.  [c.663]

В СССР, как и во многих других странах, во все возрастающем количестве ведется строительство атомных электростанций, вырабатывающих электрический ток и тепло для производственных и бытовых нужд. Атомные энергетические установки, заменяющие обычные паросиловые агрегаты и двигатели внутреннего сгорания, вводятся на морских транспортных судах и на кораблях военно-морского флота. Мощные источники ядерных излучений — ядерные реакторы и ускорители заряженных частиц — все шире используются в исследовательской практике и в промышленности для эффективного проведения технологических процессов. Широкое распространение получили радиоактивные изотопы, используемые как источники тепла в специальных генераторах электрического тока и как источники излучений в различных промышленных, исследовательских и медицинских приборах, аппаратах и установках. Не менее широко распространены стабильные изотопы ( тяжелая вода, изотопы урана, бора, азота, неона и многих других химических элементов), применяемые во многих областщ научных исследований, в промышленности и в медицинской практике.  [c.161]

В качестве источников ядерных излучений моншо использовать искусственные радиоактивные изотопы, которые должны быть не дефицитны и иметь определенный период полураспада. Целесообразно использовать следующие изотопыа) в качестве источников -jf-излучения Со , 1г , s , Se , s , Тп и б) в качестве источников (5-излучения  [c.124]

Натрий имеет более долго) ивущий изотоп nNa с довольно большой энергией излучения -квантов. Проведение всякого рода работ возле натриевой установ ки возможно лишь спустя 10—15 суток после остановки реактора. По радиоактивным свойствам калий близок к натрию. Наиболее долгоживущим является изотоп калия /дК с периодом полураспада 1,3-10 лет и большой энергией излучения у-квантов (1,46 Мэе) с захвато.м орбитальных электронов. Только малая концентрация его в техническом металле (0,0118%) оправдывает применение калия з качестве теплоносителя ядерных реакторов. Своеобразный карантин (10—15 суток) нео1б.ходим и при обслуживании реактора, в котором используется калий или сплав калия с натрием в качестве теплоносителей. Вероятно, это относится и работе с рубидием и цезием. Однако знания физических свойств этих химически весьма активных элементов и опыта работы с ними недостаточно, чтобы можно было дать какие-либо рекомендации. Сомнение вызывает возможность получения в реакторе радиоактивных изотопов s s s и 55 s с периодом полураспада 3,15 ч и 2,2 года соответственно. Большая химическая активность рубидия и цезия также является препятствием для их использования.  [c.48]

АНАЛИЗ [активационный — метод определения химического состава вещества с помощью регистрации излучения радиоактивных изотопов, образующихся при облучении вещества ядерными частицами люминесцентный — химический анализ вещества по характеру его люминесценции рентгенорадиометрический— анализ химического состава, основанный на регистрации рентгеновского излучения, возникающего при взаимодействии излучения радиоизотопного источника с атомами вещества рентгеноснектральный — метод определения химического состава примесей вещества по характеристическому рентгеновскому спектру его атомов рентгеноструктурный— метод исследования структуры вещества, основанный на изучении дифракции рентгеновского излучения в этом веществе спектральный — физический метод качественного и количественного анализа веществ, основанный на изучении их спектров — испускания, поглощения, комбинационного рассеяния света, люминесценции АНТИФЕРРОМАГНЕТИЗМ— магнитоупорядоченное состояние кристаллического вещества с антипараллельной ориентацией спиновых магнитных моментов соседних атомов в кристаллической решетке АЭРОДИНАМИКА—раздел аэромеханики, изучающий законы движения газообразной среды и ее взаимодействие с движущимися в ней твердыми телами АЭРОМЕХАНИКА— раздел механики, изучающий равновесие и движение газообразных сред и механическое воздействие этих сред на погруженные в них твердые тела  [c.225]


МЕТАЛЛОФИЗИКА — раздел физики, в котором изучаются структура и свойства металлов МЕТОД [аналогии состоит в изучении какого-либо процесса путем замены его процессом, описываемым таким же дифференциальным уравнением, как и изучаемый процесс векторных диаграмм служит для сложения нескольких гармонических колебаний путем представления их посредством векторов встречных пучков используется для увеличения доли энергии, используемой ускоренными частицами для различных ядерных реакций Дебая — Шеррера применяется при исследовании структуры монохроматических рентгеновских излучений затемненного поля служит для наблюдения частиц, когда направление наблюдения перпендикулярно к направлению освещения Лагранжа в гидродинамике состоит в том, что движение жидкости задается путем указания зависимости от времени координат всех ее частиц ин1 ерференционного контраста служит для получения изображений микроскопических объектов путем интерференции световых воли, прошедших и не прошедших через объект меченых атомов состоит в замене атомов исследуемого вещества, участвующего в каком-либо процессе, их радиоактивными изотопами моделирования — метод исследования сложных объектов, явлений или процессов на их моделях или на реальных установках с применением методов подобия теории при постановке и обработке эксперимента статистический служит для изучения свойств макроскопических систем на основе анализа, с помощью математической статистики, закономерностей теплового движения огромного числа микрочастиц, образующих эти системы совнадений в ядерной физике состоит в выделении определенной группы одновременно происходящих событий термодинамический служит для изучения свойств системы взаимодействующих тел путем анализа условий и количественных соотношений происходящих в системе превращений энергии Эйлера в гидродинамике заключаегся в задании поля скоростей жидкости для кинематического описания г чения жидкости]  [c.248]

Методы радиоактивных индикаторов и просвечивания, получившие широкое применение в исследованиях рабочих процессов парогенераторов, требуют для измерения интенсивности ядерного излучения применения специальных устройств (радиометрических установок), с помощью которых регистрируются импульсы напряжения, генерируемые приемниками (обычно газоразрядными счетчиками) при воздействии на них бета- или гамма-излучений. Реже используются схемы, в которых приемником является сцинтилляционный счетчик. Следует, однако, отметить, что для гамма-излучения схемы со сцинтилляционными счетчиками в ряде случаев оказываются более эффективными и трйбуют препаратов меньшей активности, что, несомненно, будет способствовать более широкому и безопасному применению метода радиоактивных изотопов в исследованиях рабочих процессов парогенераторов.  [c.19]

Натрий и.меет шесть изотопов с массовым числом от 20 до 25. Основные ядериые свойства этих изотопов приведены в табл. 2-2. В природе встречается только изотоп Na он нерадиоактивен. Следует иметь в виду, что натрий как высокотемпературный теплоноситель атомного реактора имеет существенный недостаток по сравнению с литием, так как после прохождения натрия через атомный реактор он прев ращается в радиоактивный изотоп Na и становится источником жесткого гамма-излучения. Поэтому первый охлаждающий контур тепловой схемы ядерной установки делается мало до  [c.50]

РАДИОАКТИВНЫЕ ИЗОТОПЫ — неустойчивые, самопроизвольно распадающиеся изотопы хнмич. элементов. В процессе радиоактивного распада происходит превращение атомов Р. и. в атомы др. химия. элемента (неразветвленпый распад) или яеск. др. химич. элементов (разветвленный распад). Известны след, тины радиоактивного распада а-распад, р-распад, К-захват, деление атомных ядер. В технике, не связанной с атомной энергетикой, используются Р. и. с распадом первых трех типов (в основном с р-распадом). В природе существует ок. 50 естественных Р. п. с помощью ядерных реакций получено ок. 1000 искусственных Р. и. В технике используются только нек-рые из искусственных Р. и. — наиболее дешевые, достаточно долговечные и обладающие легко регистрируемым излучением. Основной количественной хар-кой Р.и. является активность,определяемая числом радиоактивных распадов, происходящих в данной порции Р. и. в единицу времени. Осн. единица активности — кюри. соответствует 3,7-10 распадов в сек. Осн. качественные хар-ки Р. и. — период полураспада (время, в течение к-рого активность убывает вдвое), тин и энергия ( жесткость ) излучения. Р. и. широко используются в науке и технике как радиоактивные индикаторы и как источники излучений. Наиболее важные области применения — радиационная химия, изучение процессов в доменных и мартеновских печах, кристаллизации слитков, износа деталей машин и режущего инструмента, процессов диффузии и самодиффузии в металлах и сплавах. В измерит, технике Р. и. применяются для бесконтактного измерения таких параметров, как плотность, хим. сост. различных материалов, скорость газовых потоков и др. В гамма-дефектоскопии используются  [c.103]

Если ввести радиоактивный изотоп Fe, например, в образец, а стабильный изотоп Fe — в детектор, установленный перед регистрирующим устройством, и периодически сближать и удалять их друг от друга, то благодаря эффекту Допплера энергия испущенных Y-квантов будет соответственно увеличиваться или уменьшаться. Изменяя скорость движения источника излучения, можно получить спектр ядерного гамма-резонансного поглощения, состоящий из шести линий, когда ядро Fe внедрено в ферромагнетик, и только из одной линии (квадрупольное расщепление не рассд1атриваем), когда оно находится внутри неферромагнитного вещества.  [c.36]

Важным моментом, определяющим многие особенности установок ТЭГ, является выбор источника тепла (йли типа топлива). Источник тепла определяет конструкцию, а часто и сферу применения термоэлектрических установок. Так, использование arojviHoft энергии (ядерных реакторов) связано с дорогостоящей начальной загрузкой ядерного горючего, тяжелой защитой от излучений, но эти источники тепла (а также радиоактивные изотопы) могут работать в космосе и под водой.  [c.109]

Второй тип ядерных батарей основан на способности заряженных частиц и 7-квантов, испускаемых радиоактивными изотопами, создавать вторичные эффекты в веш,естве. Некоторые из этих эффектов можно использовать для получения электрического поля. Например, при облучении полупроводниковых материалов в них образуются отрицательные (электроны) и положительные (дырки) носители токн Кинетическая энергия частиц в этом случае преобразуется в потенциальную энергию разделенных электронно-ды-рочных пар. По принципу действия такие устройства-аналогичны солнечным элементам, только в этом случае роль солнечного излучения играют Р-частицы или у-кванты.  [c.142]

Рентгеновское у-излучение представляет собой электромагнитные излучения с широко перекрывающимися частотами и длинами волн. Y-излучение возникает в радиоактивных изотопах в результате ядерных преобразований, тогда как рентгеновское излучение представляет вторичную эмис-  [c.469]

При прохождении первичного электрона вблизи ядра возможно также испускание тормозного рентгеновского излучения (радиационные потери), а при поглощении электрона ядром, как и при поглощении у-кванта, — образование пары электрон — пози рон с дальнейшей аннигиляцией и образованием пары Y-квантов. Если при энергии электронов эл< <10 МэВ отклонение первичных электронов почти полностью обусловлено упругими столкновениями с атомными ядрами, то при более высоких энергиях (около 10—50 МэВ) благодаря способности электрона преодолевать ку-лоновский барьер ядра возможны и ядерные реакции с испусканием нейтрона или протона или образованием радиоактивного изотопа.  [c.314]


Смотреть страницы где упоминается термин Радиоактивные изотопы и ядерные излучения : [c.77]    [c.431]    [c.7]    [c.678]    [c.671]    [c.35]    [c.56]    [c.214]    [c.67]    [c.11]    [c.455]   
Смотреть главы в:

Справочник машиностроителя Том 2 Изд.3  -> Радиоактивные изотопы и ядерные излучения



ПОИСК



Газ радиоактивный

Излучение радиоактивное

Изотопия

Изотопы

Изотопы и ядерные излучения

Изотопы радиоактивные

Радиоактивность

Ядерные излучения



© 2025 Mash-xxl.info Реклама на сайте