Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы лабораторных испытаний на трение и износ

МЕТОДЫ ЛАБОРАТОРНЫХ ИСПЫТАНИЙ НА ТРЕНИЕ И ИЗНОС  [c.140]

Таким образом, исследования неоспоримо доказывают решающее влияние температурного режима на трение и износ. Игнорирование этих характеристик приводят к тому, что многие лабораторные методы и установки для оценки износов и изучения процессов изнашивания большинства современных материалов настолько далеки от реальных показателей, что нечего даже думать о переносе показателей этих испытаний в эксплуатационные условия.  [c.144]


Лабораторные испытания проводятся на лабораторных установках и приборах по тем или иным методикам. Ряд методов испытаний, хотя и нестандартизован, но получил довольно широкое распространение [25, 57, 72]. В Советском Союзе на Армавирском заводе испытательных машин и Ивановском механическом заводе им. Королева серийно изготавливаются машины для испытаний материалов на трение и износ.  [c.13]

Указанная выше методика (ГОСТ 1786-57) оказалась неприемлемой для испытания фрикционных материалов, предназначенных для тяжело нагруженных тормозных узлов самолетов, экскаваторов и пр. Институт машиноведения АН СССР разработал новый метод испытаний, утвержденный ВНИИНМАШ в виде руководящих технических материалов (РТМ 6-60). Испытания материалов на фрикционную теплостойкость согласно РТМ 6-60 имеют очень важную методическую особенность, о которой следует упомянуть в связи с вопросом о соответствии лабораторных и эксплуатационных испытаний. Если ГОСТ 1786-57 обусловливает постоянный ре жим испытаний фрикционных материалов, то РТМ 6-60 допускает некоторый диапазон изменений нагрузок и скоростей. В первом случае получается условная оценка коэффициента трения и износа, привязанная к частным условиям работы. Второй метод испытаний позволяет оценить поведение материалов в условиях постепенно ужесточающегося режима работы, обусловливающего повышение температуры на фрикционных контактах. При таком методе испытаний возможна более правильная оценка свойств тормозных материалов применительно к различным нагрузкам и скоростям.  [c.7]

Одной из разновидностей механических установок являются установки, имитирующие эрозионный износ с помощью специального индентора, которому при помощи генератора сообщалось колебательное движение. Принцип рассматриваемого метода состоит в объединении способа испытания на трение скольжения при возвратно-поступа-тельном движении истираемой поверхности и вибрации индентора. Установки такого рода по некоторым характеристикам имеют преимущества перед установками с подвижной истираемой поверхностью и особенно удобны для проведения лабораторных испытаний. Однако следует отметить, что вследствие того, что индентор воздействует на малый участок поверхности под прямым углом и при этом не имитируются реальные условия, наблюдаемые при ударно-абразивном износе, результаты испытаний являются условными.  [c.32]

Ч е с т н о в А. Л., Новый лабораторный метод испытаний на изнашивание материалов калибров. Трение и износ в машинах. Сборник 6, АН СССР,  [c.380]

Если поверхностей трения несколько, то этот метод дает суммарный износ металла со всех поверхностей трения. Метод позволяет точно отмечать различие в содержании железа за малые периоды работы машины, например при испытании автомобильного двигателя линия износа может строиться по периодам в 20 мин. Метод позволяет также определять содержание в масле других металлов — свинца, меди и т. д. Метод применим также к случаю износа малых поверхностей трения, на-при.мер при испытании металлов на износ на лабораторной машине прн наличии с.мазки. Особенно выгодно применение этого метода для оценки зависимости износа цилиндро-поршневой  [c.31]


Износостойкость — свойство материала оказывать сопротивление износу, т.е. постепенному изменению размеров и формы тела вследствие разрушения поверхностного слоя изделия при трении. Испытание металлов на износ проводят на образцах в лабораторных условиях, а деталей - в условиях реальной эксплуатации. При испытаниях образцов моделируются условия трения, близкие к реальным. Величину износа образцов или деталей определяют различными способами измерением размеров, взвешиванием образцов и другими методами.  [c.23]

Установлено [8, 9, 32, 35, 36], что форма и размеры узла трения, коэффиц 1 нт взаимного перекрытия являются факторами, влияющими на поступление газовой среды на фрикционный контакт. В работе [36] предлагается метод моделирования физико-химических явлений, зависящих от действия окружающей среды при трении асбофрикционных материалов критерии моделирования и масштабные коэффициенты перехода получены из условий подобия процессов трения, износа и теплообразования на основании работ Э. Д. Брауна, В. Н. Федосеева, А. В. Чичинадзе и др. [8, 12, 21, 23, 29, 32, 33, 34, 35], а также поступления газовой среды в зону трения. Применяя предлагаемые критериальные выражения, можно рассчитать необходимые макрогеометрические характеристики образцов и режимные параметры при лабораторных испытаниях на трение и износ, а также значительно повысить точность и надежность модельных экспериментов на малых образцах, сведя к минимуму объем стендовых испытаний, на которые целесообразно допускать материалы, показавшие лучшие свойства при испытаниях на фрикционную теплостойкость и теплоимпульсное трение [8, 19, 34, 35, 36].  [c.125]

Лабораторные испытания проводят на образцах, вырезаемых из изделий, на специальных машинах трения. Простота испытательного оборудования, экспрессность методов, сравнительно небольшая стоимость испытаний делают их наиболее рациональными при заводском контроле качества серийно выпускаемых изделий и при уточнении отдельных этапов технологического режима изготовления новых разрабатываемых изделий. Из-за сложности явлений, сопровождающих процессы трения и износа, при проведении лабораторных испытаний по определению фрикционно-износных характеристик, значительное внимание должно быть уделено применению методов подобия и моделирования [4, 7—10, 12, 21, 23, 29, 33—37 и др. ].  [c.138]

В Институте машиноведения систематически проводятся работы по созданию специального испытательного оборудования и методик испытания, которые в лабораторных условиях позволяют оценить свойства фрикционных и антифрикционных материалов, а также смазочных материалов. Опираясь на эти работы, ИМАШ совместно с ВНИИНМАШ Госстандарта и ПО Точприбор Минприбора провели большую работу по созданию и вьшус-ку нового поколения испытательных машин, а также новых методов испытания, отвечающих современным требованиям, на базе новых достижений в области трения, износа и смазки и, в первую очередь, моделирования трения и износа.  [c.186]

Результаты испытаний на этапе 1 РЦИ, которые обычно выполняются в лабораторных условиях по определяющему параметру, например температуре или нагрузке, являются базовыми для последующих испытаний. На этапе 1 проводится выбраковка по признаку влияния определяющего параметра (например, температуры или нагрузки на / или I). Это аналогично требованию, чтобы уравнение / = f (pi, Рг, Рз, — Ры) было заменено на упрощенное / = f (pi). При этом предполагается, что множество значений определяющего параметра Pib большей мере, чем остальные Ра, Рз,. .. р , влияют на / и 7. Такой подход оправдан для контроля качества материалов, область применения которых определена множеством точек ф, представляющих какую-либо зону. Верхняя граница этой зоны (sup — супремум) представляет собой множество точек М, а нижняя граница (inf -инфинум) — множество точек т, т.е. М = sup I, am = inf Так выявляют границь применения сочетания материалов. Эти границы контролируются независимыми критериями, например термпературно-кинетическими [46, 48]. Основной характеристикой при выявлении температурно-кинетических критериев является критическая температура, характеризующая переход от умеренного трения и изнашивания к интенсивному и зависящая от режима работы узла трения. Например, вид критерия применительно к смазочному материалу определяется возможностью реализации критической температуры вследствие термического разрушения адсорбционных смазочных слоев и последующего металлического контакта (первая критическая температура) или вследствие износа и термической деструкции модифицированных слоев, которые образуются в результате химической реакции активных компонентов смазочного материала с металлом поверхности трения при повышенных температурах. Это явление имеет место при второй критической температуре [48, 49, 50]. Методы, посредством которых можно выявить температуры, соответствующие этим критериям, стандартизованы (ГОСТ 23.221-84).  [c.184]


Лабораторные испытания делятся нами на две категории к первой относятся испытания для оценки механических и физико-химических свойств материалов, связанных в какой-то мере, иногда отдаленно, с поведением этих материалов при трении. Результаты испытаний являются условными, но они дают возможность исследовать процесс трения и изнашивания, определять перспективы применения новых материалов, методов упрочнения, отделки поверхностей и пр. Ряд методов испытаний 9toft категории используется для контроля стабильности качества материалов в производстве (например, испытание резины на износ согласно ГОСТ 426-57).  [c.9]

Таким образом, мы приходим к выводу о необходимости характеризовать маслянистость в первую очередь способностью масла уменьшать или предотвращать износ при тонкослойной или граничной смазке. Остается выбрать геометрические, кинематические и динамические условия испытания. Следует отметить, что обычные испытания на износ преследуют цель сравнения износоустойчивости различных материалов, чаще всего в условиях сухого трения. Соответственно совершенно различным задачам и требования к лабораторным испытаниям обоего рода могут и даже должны резко различаться. В особенности это справедливо в отношении предлагаемого нового метода, имеющего целью на приборе максимально простой конструкции с затратой минимального количества масла и времени устанавливать  [c.79]

Идеальным методом оценки применимости,покрытий в условиях ударного износа являются сами реактивные двигатели. Однако эти испытания очень дороги, и за время работы в большинстве случаев могут быть оценены только немногие покрытия. Поэтому основной отбор производится в лабораторных испытаниях, имитирующих условия работы двигателя. Аппаратура, созданная в лаборатории для отбора покрытий при испытаниях в условиях ударного и скользящего нагружения, позволяет проводить до 33 циклов нагружения в секунду при контактном давлении до 2870 кГ см со скоростью нагружения при ударе 127 см1сек и смещением при трении деталей 0,064 см Предусмотрен нагрев до 871° С. Покрытия, прошедшие успешно испытания в лабораторных условиях, направляются для испытаний на двигатель.  [c.71]

Следует отметить, что для определения эксплуатационных свойств масел до настоящего времени нет точных лабораторных методов [23]. Наиболее распространенными являются противоизносные испытания масел на четырехшариковой машине. Причем и этот метод обладает очень существенными недостатками. Например, в качестве трущихся деталей используются шарики серийных подшипников, изготовленные из сталей типа ШХ, в то время как общеизвестно, что эти стали удовлетворительно работают на износ при качении и использование их при трении скольжения нецелесообразно.  [c.166]

На основании многочисленных лабораторных опытов было установлено, что смазочная пленка, состоящая из ориентированных полярных молекул, защищает металлическую поверхность от износа также благодаря тому, что не допускает изменения строения поверхности мета.лла, а именно — предотвращает переход волокнистого строения в кристаллическое, легче поддающееся износу и разрушению. Есл1 принять шменения строения металлической поверхности клк меру прочности масляной п.ленки, то оказывается, что смеси, давшие наибольшую теплоту смачивания, обладают и наивысшей маслянистостью. Что касается коэфициента трения, то здесь порядок расположения масел меняется в зависимости от метода испытания, но во всех случаях без исключения масла, содержащие поверхностно-активные вещества, дают по сравнению с чистыми минеральными маслами более низкий коэфициент трения.  [c.96]


Смотреть страницы где упоминается термин Методы лабораторных испытаний на трение и износ : [c.208]    [c.206]    [c.32]    [c.209]    [c.191]   
Смотреть главы в:

Полимеры в узлах трения машин и приборов  -> Методы лабораторных испытаний на трение и износ

Полимеры в узлах трения машин и приборов  -> Методы лабораторных испытаний на трение и износ



ПОИСК



Износ Лабораторные испытания

Износ—испытание

Испытание на трение и износ

Метод испытаний

Методы лабораторные

Трение 26 — Испытания лабораторные

Трение износ



© 2025 Mash-xxl.info Реклама на сайте