Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конденсаторы промышленные

КОНДЕНСАТОРЫ ПРОМЫШЛЕННЫЕ Основы теплового расчёта  [c.652]

Они находят применение в конструкциях воздуховодов промышленных зданий, особенно фабрик и заводов пищевой и химической промышленности, в конструкциях змеевиков, служащих для поверхностного теплообмена, где теплообмен совершается между газообразными или жидкими веществами, движущимися по трубам и находящимися или протекающими вне труб. Такие змеевики устанавливают в варочных котлах, теплообменниках, холодильниках, конденсаторах, выпарных аппаратах, перегонных кубах и t. п.  [c.184]


Течение жидкости в виде тонкой пленки — явление весьма распространенное в природе и технике. В промышленных масштабах оно реализуется, например, в конденсаторах на тепловых электростанциях и в химической промышленности, в различных сепараторах влаги, в массообменных аппаратах криогенной техники и химической технологии. Пленочные т ечения встречаются в целом ряде иных устройств новой техники, в которых.имеют место двухфазные потоки с относительно большими объемными концентрациями газа или пара.  [c.155]

Перечень промышленных объектов, использующих двухфазные потоки, чрезвычайно широк. Достаточно назвать паровые котлы и парогенераторы АЭС, рефрижераторы и ожижители в технике низких температур, выпарные аппараты, испарители, конденсаторы, дистилляционные установки в различных технологиях, газо- и нефтепроводы, чтобы понять, насколько широка сфера применения двухфазных систем. При этом в большинстве названных (и неназванных) примеров имеют дело с организованным движением двухфазных сред в каналах.  [c.287]

Водопотребление первой группы имеет весьма значительные масштабы и во много раз превосходит все остальные виды потребления воды. К этой группе относят расходование воды на охлаждение конденсаторов паровых турбин тепловых электростанций, охлаждение доменных и сталеплавильных печей и различных аппаратов в нефтеперерабатывающей и химической промышленности. Ко второй группе относят расходы на нужды бумажной, целлюлозной, текстильной промышленности и др. Третья группа включает нужды паросиловых установок. Четвертая группа охватывает расходы воды на гидротранспорт различных материалов (в том числе шлакозолоудаление на тепловых станциях, отходов обогатительных фабрик). К пятой группе относится расход воды, входящий в состав вырабатываемого продукта пищевой промышленности, частично в химической промышленности.  [c.169]

Интенсивность теплоотдачи при пленочной конденсации в 5.. .10 раз меньше, чем при капельной, так как при пленочной конденсации теплообмен осуществляется через слой конденсата, имеющего значительное термическое сопротивление, в то время как при капельной конденсации значительная часть теплоты передается через очень тонкую пленку между каплями. Несмотря на то, что теплообмен при капельной конденсации более выгоден по сравнению с пленочной, в промышленных конденсаторах практически всегда имеет место пленочная конденсация.  [c.165]


Установки на частоту 50 Гц небольшой мощности проектируются обычно на стандартное напряжение 127, 220, 380 и 660 В и подключаются непосредственно к промышленной сети. Если коэффициент мощности ниже 0,8, то следует предварительно скомпенсировать реактивную мощность с помощью конденсаторов до значения соз <р = 0,92 -т- 0,95 при индуктивном характере цепи. Регулирование режима может осуществляться изменением числа витков индуктора, автотрансформатором, вольтодобавочным трансформатором или тиристорным широтно-импульсным регулятором (ШИР). Если напряжение индуктора по условиям техники безопасности или изготовления меньше стандартного, используются понижающие трансформаторы — печные, сварочные и т. и.  [c.167]

Теплообмен между теплоносителями является одним из наиболее важных и часто используемых в технике процессов. Например, получение пара заданных параметров в современном парогенераторе основано на процессе передачи теплоты от одного теплоносителя к другому. В конденсаторах и градирнях тепловых электростанций, воздухоподогревателях доменных печей и многочисленных теплообменных устройствах химической промышленности основным рабочим процессом является процесс теплообмена между теплоносителями. По принципу действия теплообменные аппараты могут быть разделены на рекуперативные, регенеративные и смесительные. Выделяются еще теплообменные устройства, в которых нагрев или охлаждение теплоносителя осуществляется за счет внутренних источников тепла.  [c.441]

Капельная конденсация возможна лишь в том случае, если конденсат не смачивает поверхность охлаждения. Искусственно капельная конденсация может быть получена путем нанесения на поверхность тонкого слоя масла, керосина или жирных кислот или путем примеси этих веш,еств к пару. При этом поверхность должна быть хорошо отполирована. При конденсации же чистого пара смачивающей жидкости на чистой поверхности всегда получается сплошная пленка. В промышленных аппаратах — конденсаторах — иногда возможны также случаи смешанной конденсации, когда в одной части аппарата получается капельная, а в другой — пленочная конденсация.  [c.128]

Возникли, конечно, и новые проблемы. Огромные массы металла, угля, машин нужно было теперь доставлять к месту дальнейшей переработки. Тормозом для развивающейся промышленности стал транспорт. И опять взгляды изобретателей обратились к пару. Паровые машины конструкции Уатта для транспорта не годились. Они были громоздкими, потребляли очень много воды для охлаждения конденсатора, требовали для работы больших объемов пара. Это были так называемые машины низкого давления, в которых пар поступал в цилиндр при давлении, лишь на несколько процентов выше атмосферного и использовался фактически только для образования вакуума в цилиндре.  [c.89]

Содержание никеля в медноникелевых сплавах колеблется от 5 до 30%. Эти сплавы обладают хорошей коррозионной устойчивостью и широко применяются в кораблестроении и энергетической промышленности для изготовления конденсаторов, радиаторов, трубопроводов, опреснительных установок для получения питьевой воды из морской и др. Они нечувствительны к коррозии под напряжением в аммиачных растворах, за исключением сплавов 95—5 и 90—10, и устойчивы к действию разбавленных растворов щелочей.  [c.123]

Высокий отрицательный потенциал магния делает его ценным материалом для протекторной защиты металлов от коррозии. Магниевые протекторы используются для защиты подземных и подводных трубопроводов, для внутренней защиты холодильников, конденсаторов, водонагревателей и других аппаратов химической промышленности, а также для защиты внешней обшивки кораблей. Для того чтобы предотвратить собственную коррозию и получить высокие токи, защищающие конструкцию, протекторы рекомендуется изготавливать из магния самой высокой степени чистоты. Примеси меди, железа и никеля снижают эффективность защитного действия протектора.  [c.134]

В машиностроении, химической и пищевой промышленности тантал целесообразно использовать в основном для изготовления теплообменной аппаратуры-—конденсаторов, ректификационных колонн и др. Устойчивость тантала позволяет изготавливать из него очень тонкостенные трубы для теплообменников, змеевиков, работающих под высоким давлением при 350°С, автоклавов и другого оборудования.  [c.154]


На некоторых производствах защиту поверхностей конденсаторов со стороны контакта с морской водой осуществляют нанесением лакокрасочных покрытий на основе фенольных, каменноугольных, эпоксидных, фуриловых смол. В промышленности синтетического каучука используют покрытия на основе композиций бакелитового лака с алюминиевой пудрой. Покрытия внутренних поверхностей трубных пучков можно наносить с помощью ершей или наливом в специальных установках [71. Наружная поверхность труб в кожухотрубчатых аппаратах покрывается наливом в тех же установках.  [c.26]

Для различных отраслей промышленности требуемые ресурсы эксплуатации труб различны. Так, в энергетике срок службы конденсаторных труб должен соответствовать сроку службы турбины, т. е. быть не менее 30 лет. При этом следует учитывать, что выход из строя 10 % поверхности труб требует полной замены трубного пучка конденсатора.  [c.194]

Анализ опыта эксплуатации конденсаторов турбин и других теплообменных аппаратов показывает, что на электростанциях наблюдается преждевременное коррозионное разрушение трубок, снижающее надежность и экономичность работы. Во многих случаях причина разрушения трубок — их низкое качество, в том числе наличие остаточных напряжений, а также повышенная агрессивность охлаждающей воды из-за загрязнения промышлен-  [c.199]

Теплообменные аппараты, конденсаторы в химической промышленности. До 250—300° С  [c.14]

Итак, в реакторах корпусного типа выделение газа может быть подавлено добавлением водорода в питательную воду для промышленных силовых установок потребуются большие количества водорода для подавления разложения воды. Этого можно избежать путем рециркуляции газа, но ценой увеличения азота (из-за течи воздуха в конденсаторе) и рециркуляции газообразных продуктов деления из дефектных твэлов.  [c.99]

Углеграфитовые материалы достаточно прочны, хорошо выдерживают колебания температуры и обрабатываются. При невысоких температурах они устойчивы против воздействия большинства химически агрессивных веществ и разрушаются только горячими растворами сильных окислителей. Благодаря этим свойствам широко используются при изготовлении различных деталей н аппаратов плиток, блоков для футеровки резервуаров, травильных ванн, чанов и варочных котлов, бумажной промышленности, башенной химической аппаратуры и т. п. Из пропитанного графита и графитопласта АТМ-1 (антегмита) изготовляют нагреватели, конденсаторы, испарители, холодильники для производства соляной кислоты, гипохлорита натрия, уксусной кислоты, ароматических и алифатических углеводородов, форсунки, сопла для впрыскивания и распыления агрессивных жидкостей, угольные инжекторы, краны, детали насосов и трубопроводов, фитинги, кольца Рашига и другие изделия.  [c.387]

Вместе с тем не подтвердили необходимой надежности работы импульсные конденсаторы ИС-30-0.2, специально разрабатывавшиеся НПО Конденсатор для электроимпульсной технологии. За период наладки и опытно-промышленной эксплуатации энергетический блок проработал 130 ч с частотой импульсов порядка 5 имп/с (2.36-106 циклов), при этом вышел из строя каждый четвертый конденсатор. Дальнейшее использование и совершенствование комплекса было поставлено в зависимость от замены конденсаторов на более надежные в работе.  [c.289]

Способ электроимпульсной дезинтеграции для своей промышленной реализации требует в том числе и специализированного электротехнического оборудования (прежде всего, конденсаторов), которое ранее не разрабатывалось или было рассчитано на другие параметры, существенно отличающиеся от свойственных ЭИ.  [c.305]

Коэфиииенты теплоотдачи от стенки к воде определяются по обычным формулам теории теплопередачи (см. раздел. Конденсаторы промышленные". а также т. 1, книга 1, стр. 492). Средняя логарифмическая разность температур раствора и воды принимается в пределах 8—IS С. Значения условных и пробных давлений для абсорберов не отличаются от их значений, принятыхдляаммиачных испарителей. Точно так же расчёты абсорберов на прочность не отличаются от расчётов на прочность аммиачных испарителей сходных типов.  [c.670]

Насосом Н/ вода, служащая источником низкопотенциальной теплоты, подается в испаритель. В конденсаторе холодильный агент отдает часть своей теплоты воде из системы отопления СО. Циркуляция подогретой воды осуществляется насосом Н2. Промышленностью выпускается тепловой насос НТ-80, предназначенный для тепло-, хладо-и теплохладоснабжения различных объектов. В режиме теплоснабжения насос обеспечивает получение горячей воды с температурой 45—48 °С при температуре низкопотенциального теплоносителя не ниже 6 С в режиме хла-доснабжения — получение холода с температурой до —25°С при охлаждении конденсатора водой с температурой не  [c.202]

Наибольшее промышленное применение получила конденсаторная сварка. Энергия в конденсаторах накапливается при их зарядке от источника постоянного тока (генератора или выпрямителя) а затем в процессе пх разрядки преобраг1уется в теплоту, используемую для сварки. Накопленную в конденсаторах энергию можно регулировать изменением емкости и напряжения зарядки  [c.218]

К первой группе относятся нефть, газ, уголь и другие полезные ископаемые, ко второй группе - бензин, смазочные масла, прокат, химические продукты, строительные материалы и т. п. В третью группу входят аптекарские, парфюмерные товары в промышленной упаковке, газы в баплонах, провода в катушках и т, п., т. е. единицы промышленной продукции в специальной упаковке, количество которой исчисляется в килограммах, метрах и др. Четвертая группа объединяет шестерни, болты, гайки, полупроводниковые приборы, конденсаторы и т. п., а пятая—  [c.138]

Заметно уменьшает теплоотдачу при конденсации наличие примесей неконденсирующихся газов в паре (например, воздуха). Снижение теплоотдачи при этом происходит потому, что притекающий к поверхности вместе с паром газ остается у стенки в виде газового слоя, через который затрудняется доступ пара к поверхности. Для отвода воздуха из пара в промышленных конденсаторах устанавливаются воздухоотсасывающие устройства.  [c.223]


В настоящее время энерготехнологические схемы наиболее широко распространены в химической промышленности и в цветной металлургии. Так, на рис. 13.3 приведена энерготехнологическая схема производства этилена и пропилена. Полученный в пиролизных печах пирогаз I с температурой 1113 — 1123 К подводится к котлу-утилизатору 1, где при его охлаждении до 673 К производится пар давлением 9—10 МПа. Пар направляется в турбину противодавления 2 для привода компрессора пирогаза и аналогичную турбину 3 для привода электрического генератора. Пар II, выходящий из турбин с давлением 0,25 — 0,3 МПа, распределяется на технологические нужды и частично поступает в генератор 4 абсорбционной холодильной машины для получения холода при при 236 К. За счет теплоты конденсации водяного пара происходит выпаривание хладагента из крепкого раствора, который из генератора подается в конденсатор 5, охлаждаемый водой, а затем через дроссельный вентиль в испаритель 6 к потребителям холода. Парообразный хладагент из испарителя всасывается компрессором 7, где он сжимается до давления абсорбции и направляется в абсорбер 8, охлаждаемый водой в нем хладагент поглощается слабым раствором, поступающим из генератора 4. Образующийся при этом крепкий раствор насосом 9 через теплообменник 10 растворов возвращается в генератор 4.  [c.393]

Кварцевое стекло находит применение для изготовления различных изделий в электрорадиовакуумной промышленности трубчатые, опорные и проходные изоляторы для электрических газоочис-тительных установок, высоковольтные изоляторы для высоковольтных линий, различные детали переменных конденсаторов, катушек самоиндукции, ламп, приборов, аппаратов и пр.  [c.237]

Конденсат при плотных конденсаторах, теплообменниках и технологических аппаратах содержит ийчезающе малое количество минеральных примесей и поэтому не требует специальной обработки до подачи его в котел. Однако в связи с его потерями, составляющими на конденсационных электростанциях 2—3%, а на ТЭЦ и в промышленных котельных доходящими до 40—60%, в пароводяной цикл приходится Вводить добавочную сырую воду.  [c.318]

Основное оборудование для поверхностной закалки индукционным способом изготовляется предприятиями электротехнической промышленности (генераторы, грансформаторы, конденсаторы, контакторы, реле, шкафы управления, измерительные приборы и т. д.).  [c.34]

В ряде отраслей техники режимы работы испарителей характеризуются чрезвычайно низкими температурными напорами и соответственно очень малыми плотностями теплового потока. Это относится к конденсаторам-испарителям воздухоразделительных установок, к испарителям, работающим в холодильной промышленности, и др. В испарителях, работающих в составе холодильных машин, повышение температурного напора связано с ухудшением энергетических показателей холодильной установки в целом. Например, Б установках каскадного типа снижение перепада температур с 5—7 до 2—3°С приводит к уменьшению энергозатрат при той же поверхности теплообмена на 10—15% 1137]. Однако при таких низких температурных напорах тепловой поток к хладагенту передается в условиях неразвитого кипения, поэтому коэффициент теплоотдачи к нему нередко оказывается ниже значения а со стороны горячего теплоносителя. Это приводит к очень большим габаритам теплообменных аппаратов и к неудотвлетворительным их весовым характеристикам. Так, масса кожухотрубных фреоновых испарителей обычно составляет 30—40% массы металла всей холодильной машины. Стремление уменьшить габариты испарителей, снизить расход металла (особенно дорогостоящих цветных металлов) на их изготовление заставило ученых искать возможности интенсификации теплообмена при кипении и способы достижения устойчивого развитого кипения при весьма малых температурных напорах.  [c.218]

Опытная кривая изменения относительного коэффициента теплоотдачи в зависимости -от концентрации воздуха в паре по данным [Л. 21] приведена на рис. 4-33. Здесь по оси абсцисс нанесено значение массовой концентрации воздуха в паре >i=mjma, %, а по оси ординат — отношение в/а, где Шв — масса воздуха, кг Ша—масса пара, кг, содержащиеся в единице объема смеси. Коэффициент теплоотдачи ав отнесен к разности температур tn—t , где tn—температура паровоздушной смеси вдали от поверхности, °С. Опыты проводились на горизонтальных трубах. Как видно из рисунка, при содержании в паре даже 1% воздуха коэффициент теплоотдачи снижается на 60%. При работе промышленных конденсаторов воздух непрерывно отсасывается, хотя здесь вследствие хорошего перемешивания наличие воздуха сказывается меньше.  [c.142]

Из новых материалов наибольшее внимание привлек в последнее время во многих странах, в том числе в США, титан. Титановые трубки были впервые опробованы в промышленном двухкорпусном конденсаторе (площадь поверхности теплообмена 4400 м2) около 15 лет тому назад в Великобритании на одной из приморских ТЭС и хорошо оправдали себя, но не нашли тогда применения из-за высокой стоимости. Сейчас они могут конкурировать с трубками из мельхиора (МН70—30) и коррозионностойкой стали 12Х18Н10Т.  [c.56]

Высокой производительностью, компактностью и высоким к. п. д. отличаются и генераторыСС (рис. 88), получившие распространение в станках средней мощности. В отличие от предыдущих, питание в них осуществляется от источника переменного тока 1 промышленной частоты, а в качестве токоограничивающего элемента использован конденсатор 2, поставленный перед выпрямителем 3. Конденсатор не только регулирует скорость зарядки, без чего трудно было бы поддерживать импульсный характер процесса, но и накапливает энергию в те моменты, когда напряжение источника велико, и отдает ее, когда напряжение мало.  [c.150]

Электротехническая промышленность, радио- и электронная техника Нити накала ламп мишени рентгеновских трубок эмиттеры экраны нагреватели в вакуумных и водородных печах контакты переключателей, прерывателей, регуляторов напряжения вводы и впаи в стекло (W—Си сплав) термопары (W-f-+ W—Re) кресты нитей для оптических труб Нагреватели экраны контакты, подвески, катоды и аноды электронных ламп вводы в стекло контакты ртутных выключателей Г еттеры электрон-пых ламп детали электролитических конденсаторов Электролитические конденсаторы 3, искровые предохранители нагреватели геттеры детали электронных ламп радарных установок выпрямители  [c.411]

Совместно с испытаниями камер на стенде проведено опробование импульсных конденсаторов различных типов для оценки надежности их работы в режиме повышенной частоты следования импульсов. Условия эксплуатации конденсаторов в электроимпульсных установках достаточно тяжелые работа в режиме заряд-разряд на короткозамкнутую нагрузку, т.е. глубоко колебательный режим повышенная частота следования импульса (до 20 имп/с) и, как следствие, тяжелый температурный режим. Если для порционных установок, где время непрерывной работы невелико, серийно выпускаемые конденсаторы (ИМ 100-0.1 и ИК100-0.25) с недогрузкой по напряжению (уменьшенные градиенты напряжения на изоляции) работают достаточно надежно, то в установках непрерывного действия надежность их недостаточна. За счет тщательной отбраковки конденсаторов, недогрузки по напряжению в 4 раза удается довести их срок службы в указанных режимах до Ю -10 циклов, но для промышленных аппаратов этого недостаточно. Испытание опытной партии конденсаторы ИМ-50-0.2, разработанных в п/о Конденсатор по техническому заданию КНЦ РАН, показало достаточную их надежность, однако большие габариты и вес затрудняют использование их в электроимпульсных установках. Пути решения проблем заключаются в создании малогабаритных, надежных конденсаторов, а также в совершенствовании схем источников импульсов.  [c.268]


Главной технической задачей, от решения которой в настоящее время в решающей степени зависит возможность реализации ЭИ-разработок в промышленном масштабе, является разработка конденсаторов с повышенным (в сравнении с существующими промышленными типами) ресурсом и повышенной надежностью работы в жестком динамическом режиме заряд-разряд . Это является не только технической, но и, в значительной степени, экономической проблемой. В ЭИ-технологиях экономическая эффективность технологии определяется не столько энергоемкостью процесса, сколько ресурсом работы конденсаторов, так как стоимость расходуемых конденсаторов составляет значительную, а в некоторых случаях и основную часть эксплуатационных затрат. В первом приближении для целей ЭИ-дезинтеграции ресурсный критерий экономической целесообразности может быть определен следующими цифрами измельчение рядовых руд и материалов оправдывается при ресурсе работы конденсаторов порядка 10 циклов заряд-разряд селективное измельчение и разупрочнение крупновкрапленных руд повышенной стоимости - при ресурсе в 10 циклов в специальных установках с ограниченным объемом работ и производительностью (геологические пробы, специальные материалы) -при ресурсе 10 циклов /150-152/.  [c.306]

При столь значительном диапазоне требований к ресурсному потенциалу конденсаторов их разработка потребует времени и пройдет через несколько этапов. Вместе с этим также поэтапным будет и промышленное освоение технологий электроимпульсной дезинтеграции. Во всех случаях перспективы промышленного использования ЭИ в процессах дезинтеграции более всего следует связывать с возможностью достижения значимого технологического эффекта в рудоподготовительных операциях. При выборе первоочередных объектов для применения электроимпульсной дезинтеграции, видимо, следует в качестве основных критериев принимать следующие  [c.307]


Смотреть страницы где упоминается термин Конденсаторы промышленные : [c.653]    [c.655]    [c.657]    [c.659]    [c.294]    [c.284]    [c.210]    [c.153]    [c.78]    [c.33]    [c.85]   
Смотреть главы в:

Машиностроение Энциклопедический справочник Раздел 4 Том 12  -> Конденсаторы промышленные



ПОИСК



Конденсатор

Конденсатор промышленной частоты



© 2025 Mash-xxl.info Реклама на сайте