Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод расчета конструкций по расчетным предельным состояниям

Метод расчета конструкций по расчетным предельным состояниям  [c.600]

МЕТОД РАСЧЕТА КОНСТРУКЦИЙ ПО РАСЧЕТНЫМ ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ  [c.713]

См. Строительные нормы и правила. Часть II Нормы строительного проектирования И. И. Г о л ь д е н б л а т. Основные положения метода расчета строительных конструкций по расчетным предельным состояниям и нагрузкам. М., 1955.  [c.713]

Подчеркнем еще раз, что возникновения текучести или признаков хрупкого разрушения хотя бы в одной точке конструкции (бруса) рассматривают как нарушение прочности конструкции в целом. Расчет на прочность, основанный на таком представлении об опасном состоянии конструкции, называют расчетом по опасной точке или расчетом по допускаемым напряжениям. В современной расчетной практике применяют также другие методы расчета (по предельным нагрузкам или несущей способности, по расчетным предельным состояниям), основанные на иных представлениях об опасных (предельных) состояниях конструкции, здесь эти методы не рассматриваются (см. [12, 20,36,38,46,49,51]).  [c.367]


Метод расчета по расчетным предельным состояниям в настоящее время введен как обязательный при расчете всех строительных конструкций, в этом методе получили дальнейшее развитие прогрессивные идеи расчета по несущей способности (учет пластических свойств материала) и устранены недостатки последнего.  [c.49]

В последние годы в Советском Союзе расчет строительных конструкций производят методом расчетных предельных состояний, разработанных советскими учеными проф. Н. С. Стрелецким, проф. А. А. Гвоздевым и др. Специфика этого метода заключается в особом подходе к определению расчетных нагрузок и расчетных сопротивлений элементов конструкций. Усилия же, возникающие в конструкции, и ее перемещения в целях упрощения расчетов обычно определяются по упругой стадии, т. е. в предположении, что напряжения в конструкции не превышают предела пропорциональности.  [c.600]

При расчете конструкций по методу предельных состояний согласно НиТУ 121-55 используются расчетные сопротивления стали (табл. 2), принимаемые ниже нормативного предела текучести на 10% для малоуглеродистых сталей и на 15%—для низкоуглеродистых сталей.  [c.83]

Расчет инженерных конструкций по второму и третьему расчетным предельным состояниям имеет свою специфику, зависящую от свойств используемых материалов (железобетон, металл, дерево и т. п.) и подробно излагается в специальных курсах. Поэтому, не останавливаясь на указанных методах расчета, поясним на конкретном примере ход расчета по первому расчетному предельному состоянию, который является общим для всех инженерных конструкций.  [c.51]

Расчет сварных соединений на прочность. Проектирование сварных конструкций осуществляется на основании расчетов, которые сводятся в основном к определению напряжений в различных элементах свариваемых конструкций. Существуют два метода расчета на прочность по допускаемым напряжениям и по предельному состоянию. При расчете конструкций по допускаемым напряжениям расчетное напряжение сравнивается с допускаемым и условие прочности имеет вид а [сг], где а — напряжение в опасном сечении [а] — допускаемое значение напряжения. Допускаемое напряжение устанавливается в зависимости от свойств материала, характера нагрузки и других факторов.  [c.21]


Расчет по предельному состоянию позволяет раздельно учитывать влияние нагрузки, качество материала, условия работы сварной конструкции. Сущность этого метода заключается в следующем. Конструкцию при расчете рассматривают не в рабочем состоянии, а в предельном, т. е. в таком состоянии, за пределами которого дальнейшая нормальная эксплуатация конструкции недопустима. Сварные конструкции рассчитывают по двум предельным состояниям по несущей способности и по развитию чрезмерных деформаций. При расчете по несущей способности расчетное напряжение от расчетных усилий не должно превышать расчетного сопротивления металла  [c.334]

Расчет по методу предельных состояний дает возможность осуществлять дифференцированный подход к различным частям металлических конструкций и обеспечивать важнейший принцип конструирования — равнопрочность элементов и их соединений. При этом методе специфика работы конструкции учитывается введением понятий о предельных состояниях, ограничивающих или исключающих его нормальную эксплуатацию. В отличие от расчета по допускаемым напряжениям в расчете по предельным состояниям вместо одного коэффициента запаса принимается система трех расчетных коэффициентов однородности, перегрузки и условий работы. При расчете конструкции по предельным состояниям вместо допускаемых напряжений принимают расчетные сопротивления, которые являются наименьшими возможными сопротивлениями материала, гарантируемыми весьма малой вероятностью появления меньших значений.  [c.45]

Необходимо еще раз остановиться на двух вопросах. Во-первых, надо разъяснить, что все расчеты будут выполняться по опасной точке, т. е. нарушением прочности конструкции будем считать возникновение хотя бы в одной точке заметных пластических деформаций или признаков хрупкого разрушения. Не вдаваясь в подробности, надо упомянуть, что такой подход к расчету не единственно возможный и в расчетной практике применяют другие методы и подходы. Конечно, учащимся строительных специальностей в свое время придется подробно рассказывать о расчетах по предельным состояниям. Во-вторых, надо дать понятие о предельном напряжении как о напряжении, при котором возникают признаки разрушения или появляются заметные пластические деформации уточнить, какие механические характеристики материалов при статическом нагружении являются предельными напряжениями.  [c.77]

В сборнике рассматриваются основы методов расчетного и экспериментального определения прочности и долговечности циклически нагруженных элементов конструкций в широком диапазоне температур, времен и чисел циклов. Приводятся критерии и основные уравнения статических и циклических предельных состояний в температурно-временной постановке рассмотрены закономерности деформирования и разрушения в зонах концентрации и в связи с неоднородностью напряженных состояний. Рассмотрены методы испытаний на циклическое нагружение, описан ряд опытных результатов. Систематизированы данные по характеристикам малоцикловой усталости, по концентрации напряжений и деформаций, необходимые для расчета прочности. Излагаемый материал в значительной степени основывается на результатах работ сотрудников Института машиноведения, доложенных на Всесоюзном симпозиуме по малоцикловой усталости при повышенных температурах в Челябинске в 1974 г.  [c.2]

При расчете изгибаемых элементов конструкций на прочность используются методы, рассмотренные в 3.7. При расчете строительных конструкций применяется метод расчета по первой группе предельных состояний в машиностроении — метод допускаемых напряжений. В подавляющем большинстве случаев решающее значение на прочность элементов конструкций оказывают нормальные напряжения, действующие в крайних волокнах балок и лишь в некоторых случаях касательные напряжения, а также главные напряжения в наклонных сечениях. Во всех случаях наибольшие напряжения, возникающие в балке, не должны превышать некоторой допустимой для данного материала величины. При расчете по первой группе предельных состояний эта величина принимается равной расчетному сопротивлению R, умноженному на коэффициент условий работы при расчете по методу допускаемых напряжений — допускаемому напряжению [а]. В первом случае условие прочности записывается в виде  [c.150]


Особое внимание в настоящем томе уделено вопросам, связанным с расчетными нагрузками расчетам на прочность при максимальных напряжениях и при напряжениях, переменных во времени (на сопротивление усталости), и общим расчетам. Расчет металлических конструкций дан по современному методу предельных состояний, а также и по широко еще используемому методу допускаемых напряжений.  [c.5]

Расчетные нагрузки металлических конструкций при расчете по методу предельных состояний  [c.165]

Р — коэффициент, учитывающий воздействие ветровой нагрузки, зависит от принятой методики расчета так, при расчете элементов крана по методу допускаемых напряжений р = 1, по методу предельных состояний р = 1,1, для груза р = 1,25 С —аэродинамический коэффициент, учитывающий влияние формы поверхности и др. V — коэффициент, учитывающий динамическое воздействие на конструкцию вследствие пульсации скоростного напора ветрового потока Рв —расчетная наветренная площадь, м , определяемая для элементов крана по формуле  [c.24]

Корпуса энергетического оборудования и сосуды под давлением, работающие при статическом и повторноч татическом режимах нагружения, представляют собой крупногабаритные конструкции, в которых по условию прочности и надежности не допускается развитие в большом объеме материала пластических деформаций. Нормы расчета на прочность поэтому предусматривают в качестве основы расчетных методов оценку прочности, в частности, по такому предельному состоянию, как пластическая деформация по всему сечению детали. Это выражается в назначении допускаемого коэффициента запаса прочности по пределу текучести щ = 1,5, который учитывается при выборе основных размеров элементов по общим мембранным напряжениям. Например, в цилиндрической оболочке  [c.204]

Моделирование несущей способности оболочек из композитов. Содержание процесса постановки любой задачи оптимизации состоит в моделировании проектной ситуации и построении модели оптимизации, т. е. включает определение локальных критериев эффективности, формулировку модели проекта и ограничений на варьируемые параметры, а также их последующую формализацию в качестве элементов оптимизационной модели. Формализация модели проектной ситуации означает математически строгое определение связей между параметрами модели проекта и показателями его функциональности и экономичности, выражаемых посредством функциональных зависимостей или соотношений. В задачах оптимизации несущих конструкций функциональные зависимости между параметрами проекта детерминируются расчетными моделями оптимизируемых конструкций и их предельных состояний, подлежащих учету по проектной ситуации, а в случае конструкций из композитов, кроме того, моделями композиционного материала. Упомянутые модели конструкции, ее предельных состояний и материала синтезируются в модели расчета несущей способности конструкции, свойства которой непосредственно определяют размерность частных моделей оптимизации М , а также их качественный характер одно- или многоэкстре-мальность, стохастичность или детерминированность. Таким образом, моделирование несущей способности является одним из важнейших этапов постановки задач оптимизации несущих конструкций, на котором в значительной мере определяются свойства соответствующих оптимизационных моделей, существенные для выбора средств и методов их численной реализации, а также анализа и интерпретации получаемых оптимальных рещений.  [c.175]

Метод допускаемых напряжений. Расчет по этому методу проводят, если отсутствуют числовые значения коэффициентов перегрузки щ, необходимые для расчета по методу предельных состояний. Этот метод основан на сравнении напряжений (Т, возникающих в элементе конструкции от действия максимальных нагрузок (расчетные случаи II и III), с допускэг емыми напряжениями. Основная расчетная зависимость имеет вид  [c.494]

Таким образом, можно предложить метод расчета для нежестких аэродромных покрытий, работающих в стадии обратимых деформаций. В качестве расчетной схемы здесь используется модель слоистого упругого полупространства. За критерии предельного состояния принимают достижение местного предельного равновесия по сдвигу в подстилающем грунте и возникновение предельно допустимых растягивающих напряжений при изгибе в монолитных слоях конструкции покрытия [135].  [c.366]

Введение коэффициентов безопасности позволяет во многих случаях получать удовлетворительные конструкции, однако при проектировании новой техники, когда нет ни опыта, ни данных по эксплуатации, выбрать разумный коэффициент безопасности очень сложно. Произвольно назначенный коэффициент безопасности может привести к неправильным решениям, следствием которых может стать или завьпиенный вес конструкций, или аварийная ситуация. Основная трудность при определении допускаемых напряжений (или деформаций), а также определении несущей способности конструкции состоит в согласовании расчетных данных с фактическими. Задача выбора конкретного значения коэффициента безопасности, например для определения допускаемого напряжения, осложняется тем, что механические характеристики материала (от которых зависят предельные состояния конструкции), реальные силы и геометрические размеры элементов конструкции, от которых зависят текущие состояния конструкции, имеют случайные разбросы. Традиционные методы расчета как при расчете по предельным состояниям, так и по допускаемым напряжениям, возможные случайные разбросы в явном виде не учитываются, т.е. не учитывается вероятностный характер предельных состояний конструкции или вероятностный характер реального состояния конструкции. Поэтому оценивать работоспособность конструкции логичнее не по детерминированным неравенствам (9.1)—(9.3), а по вероятности выполнения этих неравенств, т.е.  [c.376]


Корпуса энергетического оборудования и сосуды под давлением, работающие при статическом и повторно-статическом режимах на гружения, представляют собой крупногабаритные конструкции, в которых по условию прочности и надежности не допускается развития в большом объеме материала пластических деформаций [1]., Нормы расчета на-прочность [2] поэтому предусматривают в качестве основы расчетных методов оценку прочности, в частности, по т 1Кому предельному состоянию, как пластическая деформация по всему сечению детали. Это выражается в назначении допускаемого коэффициента запаса прочности по пределу текучести = 1,5, который учитывается при выборе основных размеров элементов по общим мембранным напряжениям. Например, в цилиндрической оболочке допускаемые расчетное давление р и давление гидроиспытаний соответственно в 1,73 и 1,38 раза меньше величины рт соответствующей началу текучести в гладкой части оболочки (по условию Мизеса).  [c.122]

Основной метод расчета на проч-ность элементов машин, аппаратов и приборов — расчет по опасной точке (по допускаемым напряжениям). При этом методе нарушением прочности считается достижение расчетным напряжением предельного значения хотя бы в одной точке конструкции. В за висимости от материала, типа напря женного состояния и характера из менения напряжений во времени в ка честве предельного напряжения должна быть принята одна из следую ш,их механических характеристик ма териала предел текучести сг (физиче ский или условный) при тaтичe кo нагружении конструкции из пластич ного материала предел пpoчнo тi а р при растяжении, жа  [c.171]


Смотреть страницы где упоминается термин Метод расчета конструкций по расчетным предельным состояниям : [c.393]    [c.35]   
Смотреть главы в:

Сопротивление материалов  -> Метод расчета конструкций по расчетным предельным состояниям

Сопротивление материалов Издание 3  -> Метод расчета конструкций по расчетным предельным состояниям



ПОИСК



39 — Конструкция 31—32 — Методы

439 — Расчет 442 — Расчетные

Метод предельных состояний

Метод расчета по предельным

Метод расчета по предельным состояниям

Метод расчета по расчетным предельным состояниям

Метод расчетный

Метод расчетных предельных состояний

Основные расчетные положения Общие сведения о методе расчета конструкций по предельным состояниям

Предельное состояние

Расчет по методу предельных состояни

Расчет по предельным состояниям

Расчетные состояния

Состояние Предельное конструкции



© 2025 Mash-xxl.info Реклама на сайте