Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные понятия и определен я движения жидкости

Математику легко убедить себя в том, что теоретическая гидродинамика в основном непогрешима. Так, Лагранж ) писал в 1788 г. Мы обязаны Эйлеру первыми общими формулами для движения жидкостей... записанными в простой и ясной символике частных производных... Благодаря этому открытию вся механика жидкостей свелась к вопросу анализа, и будь эти уравнения интегрируемыми, можно было бы в любом случае полностью определить движение жидкости под воздействием любых сил... Многие из величайших математиков, от Ньютона и Эйлера до наших дней, штурмовали задачи теоретической гидродинамики, веря в это. И в их исследованиях, часто вдохновляемых физической интуицией, были введены некоторые из наиболее важных понятий теории уравнений в частных производных функция Грина, вихревая линия, характеристика, область влияния, ударная волна, собственные функции, устойчивость, корректность задачи —таков неполный список.  [c.16]


Кратко рассмотрим понятие поля параметров. При анализе задач гидромеханики удобно определять параметры движущейся жидкости в зависимости от пространственных координат, и, следовательно, поле параметров определено, если в каждой точке пространства, занятого течением, известны значения этих параметров. Таким образом, например, функция р х, у, г,() определяет давление в точке Q(x, у, г) для частицы жидкости, попадающей в эту точку в момент времени I. В лагранжевых координатах давление отдельной частицы / определяется функцией р — р1 1). Другими словами, при подходе Лагранжа не требуется задавать фиксированную систему координат, как при подходе Эйлера, поскольку система координат движется вместе с частицей. Основные законы движения жидкости справедливы только для системы, имеющей постоянную массу, как в подходе Лагранжа, но они выражаются в фиксированной системе координат, как в подходе Эйлера. Поэтому необходимо найти со-отнощение, связывающее оба этих подхода, и это соотношение  [c.345]

Основные понятия и методы механики. Осн. кинема-тич, мерами движевия в М. являются для точки — её скорость и ускорение, для твёрдого тела — скорость Я ускорение поступит, движения и угл. скорость и угл. ускорение вращат. движения. Кинематич. состояние деформируемого твёрдого тела характеризуется относят. удлинениями и сдвигами его частиц совокупность МЕХ величин определяет т. н. тензор деформаций. Для Яндкостей и газов кинематич. состояние характеризуется тензором скоростей деформаций при изучении воля скоростей движущейся жидкости пользуются также понятием вихря, характеризующего вращение адстицы.  [c.127]

Основные понятия, введенные в главе о теплопроводности, сохраняются и в случае конвективного теплообмена, но становятся более сложными. Так, вектор плотности теплового потока определяется теперь не только градиентом температуры в жидкости, но и полем скорости плотность теплового потока в жидкой среде имеет две составляющих одну, определяемую законом Фурье (теплопроводность), и вторую, опре еляемую движением жидкосж (конвекция)  [c.215]

В своем трактате Общие принципы движения жидкостей (1755) Эйлер впервые вывел основную систему уравнений движения идеальной жидкости, положив этим начало аналитической механике сплошной среды. Гидродинамика обязана Эйлеру расширением понятия давления на случай движущейся жидкости. Стоит вспомнить слова Эйлера относительно того, что жидкость до достижения тела изменяет свое направление и скорость так, что, подходя к телу, протекает мимо него вдоль его поверхности и не прилагает к телу никакой другой силы, кроме давления, соответствующего отдельным точкам соприкосновения . В этих словах Эйлера, в противовес ньютонианским взглядам на ударную природу взаимодействия твердого тела с набегающей иа него жидкостью, выдвигается новое для того времени представление об обтекании тела жидкостью. Давление определяется не наклоном поверхности в данной точке к направлению набегающего потока, а движением жидкости вблизи этой точки поверхности. Эйлеру принадлежит первый вывод уравнения сплошности жидкости (в частном случае движения жидкости по трубе это уравнение в гидравлической трактовке было дано задолго до Эйлера в 1628 г. учеником Галилея Кастелли), своеобразная и ныне общепринятая формулировка теоремы об изменении количества движения применительно к жидким и газообразным средам, вывод турбинного уравнения, создание теории реактивного колеса Сег-нера и многое другое.  [c.20]


Поле скорости жидкости. Скорость является важнейшим понятием, которое наряду с законом движения характеризует течение жидкости. В лагранжевых координатах при наличии закона движения (1.12) скорость 1> Х,0 жидкой частицы по определению V = Ьх/Ы. Она вычисляется для фиксированной частицы и численно равна расстоянию, прдходимому за единицу времени, поэтому здесь берется частная производная от х по Однако задание скорости в лагранжевых координатах при описании движения жидкости встречается крайне редко. Кроме того, такое задание не позволяет просто определить пространственные градиенты скорости в точках жидкости. Поэтому при анализе течения основной независимой переменной выступает векторная функция и(х, 1) — скорость жидкости в точке х в момент времени /. В эйлеровых координатах она определяется как объем жидкости, проходящей за единицу времени через единичную площадку, которая перпендикулярна направлению потока. Отыскание векторного поля скоростей к(х, 1) наряду со скалярными полями давления р(х,0 и плотности р(х, /) является основной задачей гидромеханики.  [c.16]

Основные понятия и методы механики. Осн. кинематич. мерами движения в М. являются для точки — её скорость и ускорение, а для тв. тела — скорость и ускорение поступат. движения и угловая скорость и угловое ускорение вращат. движения. Кинематич. состояние деформируемого ТВ. тела характеризуется относит. удлинениями и сдвигами его ч-ц совокупность этих величин определяет т. н. тензор деформаций. Для жидкостей п газов кинематич. состояние характеризуется тензором скоростей деформаций при изучении поля скоростей движущейся жидкости пользуются также понятием вихря, характеризующего вращение ч-цы.  [c.415]

При анализе воздействия на ИПТ входных сигналов (основного и помехосоздающих) предполагалось, что закономерности изменения их от времени заранее определены, т.е. эти воздействия являются детерминированными. Более точно, все входные сигналы в реальных условиях нежестко заданные, и их следует считать случайными функциями времени. Типичный пример — изменение температуры и скорости движения потока газа или жидкости при турбулентном нестационарном режиме его течения. При турбулентном движении скорость и температура в выбранной точке потока неупорядоченно изменяют -я, пульсируют около некоторых средних значений. Эти пульсации наб да.ются и в случае, когда средние скорость и температура потока по стоянны во времени, г.е. течение является стационарным и изотермическим. Для турбулентного потока понятие его истинной температуры тер,чет свою ценность, и при ее количественном определении используют вероятностные характеристики, применяемые в теории случайных (стохастических) процессов.  [c.73]

Для полного исследования этих проблем необходимо отказаться от простого допущения идеальной жидкости и определить влияние вязкости или внутреннего трения однако можно получить некоторое понятие о лобовом сопротивлении, не усложняя явления. При развитии теории подъемной силы было целесообразно рассматривать такие тела, которые давали большую подъемную силу при относительно малом лобовом сопротивлении, так что можно было пренебречь последним, не изменяя основных условий задачи. Подобно этому, при исследовани лобового сопротивления целесообразно в первую очередь рассмотреть тела больших поперечных размеров, симметричные относительно направления движения, для кото-рых подъемная сила равна нулю при большом лобовом сопротивлении. Как и раньше, будем рассматривать плоско-параллельный поток жидкости.  [c.72]


Смотреть страницы где упоминается термин Основные понятия и определен я движения жидкости : [c.280]   
Смотреть главы в:

Гидравлика и аэродинамика  -> Основные понятия и определен я движения жидкости



ПОИСК



1.125, 126 — Определяемые

Понятие жидкости



© 2025 Mash-xxl.info Реклама на сайте