Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие дифференциальные уравнения равновесия жидкости

Общие дифференциальные уравнения равновесия жидкости  [c.32]

Полученные выражения представляют собой дифференциальные уравнения равновесия жидкости в общем виде. Приведем их к виду, удобному для интегрирования. Для этого умножим каждое уравнение на dx, dy, dz и сложим почленно  [c.10]

Как отмечалось выше, газы относятся к сжимаемым жидкостям, и уравнения равновесия и движения газов отличаются от таковых для капельной жидкости лишь тем, что они должны учитывать сжимаемость газов. Поэтому полученные ранее дифференциальные уравнения равновесия являются общими для капельной жидкости и газов.  [c.55]


Академик Эйлер в сочинении Общие принципы движения жидкости (1755 г.) вывел дифференциальные уравнения равновесия и движения жидкостей, дав общее решение задачи. Из дифференциальных уравнений Эйлера легко может быть получено и уравнение Бернулли, являющееся частным решением этих уравнений.  [c.7]

Общие уравнения движения идеальной жидкости могут быть получены из дифференциальных уравнений равновесия той же жидкости, если, согласно принципу д Аламбера, к действующим силам присоединить силы инерции.  [c.73]

Из механики твердого тела известно, что уравнение относительного покоя может быть получено из общего уравнения равновесия путем добавления к действующим силам сил инерции переносного движения. Следовательно, для вывода уравнения относительного покоя жидкости из дифференциального уравнения равновесия (22)  [c.51]

Дифференциальные уравнения равновесия (1.20) и (1.22), как указывалось в 2, имеют общий характер и могут быть использованы при расчете сжимаемой жидкости или газа. В отличие от несжимаемой (капельной) жидкости плотность газа есть величина переменная, зависящая от состояния газа.  [c.59]

Три других мемуара Эйлера — Общие начала состояния равновесия жидкостей , Общие начала двин ения жидкостей и Продолжение исследований по теории движения жидкостей , вышедшие в записках Берлинской академии наук (1755—1757), составили основополагающий трактат по гидродинамике во втором из них, в частности, выведены дифференциальные уравнения в частных производных движения несжимаемой жидкости, а в третьем рассмотрены некоторые вопросы движения жидкостей и газов в узких трубках произвольной формы. Со всем этим была связана разработка Эйлером приемов решения уравнений в частных производных. Одно из таких уравнений встречается теперь в задачах о движении газа с околозвуковыми и сверхзвуковыми ско-  [c.188]

Все эти экспериментальные исследования, несомненно, послужили мощным толчком к тому, чтобы предпринимать попытки к теоретическим исследованиям по вопросу о составлении дифференциальных уравнений движения жидкости с учётом не только давления", но и внутреннего трения. К этому времени стали открываться возможности для теоретических исследований такого рода в связи с развитием механика упруго деформируемого тела. Накопление исследований и решений конкретных задач по теории изгиба брусьев, по теории кручения стержней и по теории колебаний стержней и пластинок на основе использования закона Гука о пропорциональности напряжений деформациям создало все предпосылки не только к тому, чтобы установить общие уравнения равновесия и колебаний упругих тел, но и к тому, чтобы закон Гука в несколько изменённой форме распространить на жидкость и на основе этого создать дифференциальные уравнения движения жидкости с учётом внутреннего трения. Этим обстоятельством и объясняется тот факт, что создатели математической теории упругости—Навье, Пуассон, Коши, Сен-Венан и Стокс оказались одновременно и создателями математической теории движения вязкой жидкости.  [c.14]


Л. Эйлер в 1755 г. в труде Общие принципы движения жидкости вывел систему дифференциальных уравнений равновесия и движения жидкостей.  [c.15]

Эти уравнения представляют собой общие условия равновесия жидкости в дифференциальной форме, выведенные в 1755 г. Л. Эйлером.  [c.18]

Поверхности уровня, — Давление р в общем случае есть функция координат х, у, г и изменяется в жидкости от точки к точке. Если жидкость находится в равновесии, то поверхности, вдоль которых давление остается постоянным, называются поверхностями уровня. Для каждой такой поверхности выполняется условие йр=0. Дифференциальное уравнение поверхностей уровня имеет поэтому, на основании соотношения (2), следующий вид  [c.270]

В разд. 2 даны основные законы термодинамики и указаны важнейшие сферы их применения, рассмотрены фундаментальные определения, обеспечивающие понимание общности методов термодинамики для анализа различных явлений, включая реальные процессы теплоэнергетики. Описаны основные термодинамические свойства твердых тел, жидкостей и газов, представлены дифференциальные уравнения термодинамики, устанавливающие взаимосвязи между этими свойствами. Рассматриваются общие условия равновесия различных видов термодинамических систем, включая фазовое равновесие. Приводятся уравнения для расчета термодинамических свойств газовых смесей, в том числе для влажного воздуха.  [c.7]

Таким образом, задача свелась к обыкновенным дифференциальным уравнениям. Интегрируя систему дифференциальных уравнений, получим общее решение задачи о равновесии жидкости в консервативном поле сил  [c.101]

С того момента, как были созданы основы общей механики и дифференциального исчисления, к концу XVII в., созрели все возможности для развития гидростатика и гидродинамики идеальной жидкости. Общие уравнения равновесия жидкости с учётом действия массовых сил, содержащие частные производные от неизвестной функции давления, были даны в 1743 г. в работе Клеро Теория  [c.12]

В шестой главе изложена общая термодинамическая теория фазовых равновесий в растворах. Дан вывод дифференциальных уравнений, описывающих влияние внешних условий на равновесие сосуществующих фаз в бинарных двухфазных системах. Подробно рассмотрены фазовые равновесия жидкость—пар. Даны строгая формулировка и вывод законов Гиббса—Коновалова и законов Вревского и охарактеризованы границы их применимости.  [c.5]

В этом разделе дан вьшод дифференциальных уравнений, выражающих условия термодинамического равновесия в двухфаз-иых системах. Эти уравнения представляют собой строгие следствия основных законов термодинамики и имеют весьма общий характер. Они применимы к рассмотрению условий равновесия в любых двухфазных системах (жидкость—пар, жидкость—твердая фаза, жидкость—жидкость и т. д.). Для простоты ограничимся случаем двухкомпонентной двухфазной системы.  [c.130]

Гидродинамическая турбулентность, описываемая уравнениями Навье-Стокса, имеет много общего с движением динамических систем, описываемых обыкновенными дифференциальными уравнениями, о которых шла речь в предыдущей главе. Связь эта определяется действием вязкости, которая лишает моды с высокими номерами самосто-ятельности . Хопфом даже была высказана гипотеза о том, что все множество траектории уравнения Навье-Стокса (его фазовое пространство бесконечномерно) притягивается к конечномерному множеству. Отсюда сразу следует, что при i оо движение жидкости можно описывать конечномерными уравнениями. Эта гипотеза, правда, до сих пор не доказана, но она кажется совершенно естественной, если учесть, что вязкость препятствует существованию мелкомасштабных возмущений. Добавим, что уже обнаруженные для уравнения Навье-Стокса основные бифуркации носят конечномерный характер [5]. Это, например, переход стационарного устойчивого течения в периодическое (рождение из состояния равновесия предельного цикла), установление двухпериодического течения (рождение двумерного тора) и др. Поэтому есть все основания считать, что и очередная бифуркация — переход к неупорядоченному течению — для многих гидродинамических задач также окажется конечномерной.  [c.496]



Смотреть страницы где упоминается термин Общие дифференциальные уравнения равновесия жидкости : [c.13]    [c.275]    [c.126]   
Смотреть главы в:

Гидравлика и аэродинамика  -> Общие дифференциальные уравнения равновесия жидкости



ПОИСК



283 — Уравнения жидкости

Дифференциальные уравнения равновесия жидкости

Жидкость равновесие

Общие уравнения

Общие уравнения равновесия

Равновесие жидкость—жидкость

Уравнения дифференциальные равновесия

Уравнения равновесия жидкостей

Уравнения равновесия сил

Уравнения равновесия уравнения



© 2025 Mash-xxl.info Реклама на сайте