Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прямой изгиб чистый и поперечный

ПРЯМОЙ ИЗГИБ ЧИСТЫЙ И ПОПЕРЕЧНЫЙ  [c.201]

ИЗГИБ ПРЯМОГО БРУСА Простой чистый и поперечный изгиб  [c.207]

Здесь же, во вводной части темы, целесообразно дать определения понятий чистый и поперечный изгиб и, конечно, обратить внимание учащихся, что эти понятия в равной мере относятся и к прямому, и к косому изгибу н тот и другой может быть как чистым, так и поперечным. Мы имеем в виду определения по внутренним силовым факторам чистым будем называть изгиб, при котором в поперечных сечениях балки возникают только изгибающие моменты. Это обстоятельство необходимо подчеркнуть, так как нередко в практике преподавания ограничиваются частным случаем балки, нагруженной только парами сил.  [c.120]


С помощью эксперимента установлено, что если на боковую поверхность резинового бруска прямоугольного поперечного сечения нанести ортогональную сетку в виде продольных и поперечных прямых (рис. 7.26), то после деформирования на участке чистого изгиба продольные прямые принимают криволинейное очертание, а поперечные — остаются прямыми. При этом сетка остается ортогональной. Отсюда можно сделать вывод, что угловые деформации в плоскости изгиба отсутствуют, и поперечные сечения балки при деформации не искривляются.  [c.131]

Формула (7.5) выведена для случая чистого прямого изгиба бруса. При поперечном прямом изгибе предпосылки, положенные в основу ее вывода, нарушаются поперечные сечения бруса за счет возникновения в них касательных напряжений искривляются (гипотеза Бернулли несправедлива) кроме того, в этом случае имеет место, хотя и весьма незначительное, взаимное надавливание волокон. Тем не менее, как показывают экспериментальные и точные теоретические исследования, эта формула дает значения нормальных напряжений и для случая поперечного изгиба с точностью, вполне достаточной для практических расчетов.  [c.251]

Все формулы настоящего параграфа получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу, так как поперечные сечения не остаются плоскими, а искривляются продольные волокна взаимодействуют друг с другом, давят друг на друга и находятся, следовательно, не в линейном, а в плоском напряженном состоянии. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечениях кроме М действует еще Л/и Q, можно пользоваться формулами, выведенными для чистого изгиба. Погрешность при этом получается весьма незначительной.  [c.246]

Картина деформированного состояния при чистом изгибе, подтверждающая гипотезу плоских сечений, хорошо видна на резиновой модели бруса прямоугольного сечения с нанесенной на боковой грани сеткой из продольных и поперечных линий (рис. 2.74, а), имитирующих продольные слои н поперечные сечения бруса. При нагружении обоих концов бруса противоположно направленными парами сил продольные линии искривляются, образуя дуги окружности, а поперечные, оставаясь прямыми, лишь поворачиваются на некоторый угол (рис. 2.74, б).  [c.211]

В предыдущих главах сопротивления материалов были рассмотрены простые виды деформации бруса — растяжение (сжатие), сдвиг, кручение, прямой изгиб, характерные тем, что в поперечных сечениях бруса возникает лишь один внутренний силовой фактор при растяжении (сжатии) — продольная сила, при сдвиге — поперечная сила, при кручении — крутящий момент, при чистом прямом изгибе — изгибающий момент в плоскости, проходящей через одну из главных центральных осей поперечного сечения бруса. При прямом поперечном изгибе возникает два внутренних силовых фактора— изгибающий момент и поперечная сила, но этот вид деформации бруса относят к простым, так как при расчетах на прочность совместное влияние указанных силовых факторов не учитывают.  [c.301]


Нанесем на поверхность бруса в пределах участка чистого изгиба сетку продольных и поперечных прямых (рис. 2.73, а). При изгибе бруса продольные линии искривятся — изогнутся, а поперечные линии, оставаясь прямыми, повернутся на некоторый угол. Выделим элемент длиной г и найдем удлинение волокна, находящегося на расстоянии у от нейтрального слоя. На рис. 2.73, в этот элемент изображен в большем масштабе. Длина дуги 00 равна 2, так как нейтральный слой при изгибе не меняет длины.  [c.252]

На боковую поверхность призматического резинового (для большей наглядности) бруса прямоугольного сечения нанесем сетку продольных и поперечных прямых линий и подвергнем этот брус деформации чистого изгиба (рис. 23.2). В результате можно видеть следующее  [c.234]

На участках балки, где ц=0 (участок АВ на рис.6.3 и участок ВС на рис. (6.4), поперечная сила Q постоянная и изображается прямыми, параллельными базовой ЛИВИИ, а изгибающий момент М изменяется по линейному закону и изображается наклонной прямой. При чистом изгибе М изображается прямой, параллельной базовой линии (рис.6.2) участок ВС на рис, 6 3.  [c.44]

Если изгиб происходит с искривлением оси балки в одной из главных це1[тральных плоскостей инерции, например балка изгибается лишь в плоскости Оуг, то этот изгиб называют прямым. В этом случае изгибающий момент М,., как вектор, составляет прямой угол с плоскостью Оуг. Если прямой изгиб происходит при наличии лишь постоянного по длине балки изгибающего момента Мх, то изгиб на этом участке называют чистым. Если прямой изгиб происходит при наличии поперечной силы Qy, то это прямой поперечный изгиб. Если изгиб происходи г с выходом изогнутой оси балки в обе главные центральные плоскости, то такой изгиб называется косым. Он может быть чистым косым изгибом, если отсутствует поперечная нагрузка, и пространственным поперечным изгибом, если происходит при действии поперечной нагрузки. Обычно косой изгиб представляют как наложение двух прямых изгибов. Для того чтобы на каком-либо участке длины балки имел место изгиб, в поперечном сечении должен быть отличен от нуля по крайней мере один из внутренних изгибающих моментов  [c.227]

Часто термин прямой в названии прямого чистого изгиба и прямого поперечного изгиба не употребляют и их называют соответственно чистым изгибом и поперечным изгибом.  [c.209]

Экспериментальные и теоретические исследования показывают, что формулы, полученные в 7.6 для случая чистого изгиба, применимы и при прямом поперечном изгибе.  [c.248]

При изгибе балки в одной из главных плоскостей (такой изгиб, как известно, называют прямым -или простым изгибом) в ее поперечных сечениях возникают два внутренних силовых фактора изгибающий момент и поперечная сила. Это общий случай прямого изгиба, называемый поперечным прямым изгибом. В частных случаях, когда поперечные силы равны нулю, изгиб называют чистым.  [c.213]

Эпюры поперечных сил и изгибающих моментов построены на рис. 89, бив. Балка в рассмотренном примере испытывает чистый изгиб, так как поперечная сила во всех ее поперечных сечениях равна нулю. Эпюра моментов при чистом изгибе представляет собой прямую линию, параллельную оси балки.  [c.99]

Формула (87) для определения нормальных напряжений выведена для чистого изгиба. Однако ею можно пользоваться и в общем случае прямого поперечного изгиба, когда в сечениях возникает не только изгибающий момент, но и поперечная сила, Поперечные силы, как показывают опыт и теоретические исследования, практически не влияют на величины нормальных напряжений. Опасным в отношении нормальных напряжений будет сечение, в котором изгибающий момент имеет наибольшую абсолютную величину,  [c.111]


Плоский поперечный изгиб. Пусть поперечное сечение прямого стержня имеет две оси симметрии х, у. Пусть, далее, на этот стержень в одной из плоскостей, содержащих ось стержня г и одну из осей симметрии, х или у, его поперечного сечения, действуют сосредоточенные силы и распределенная нагрузка. В этих условиях изгиб стержня происходит в плоскости действия нагрузки и его упругая линия будет плоской кривой. Такой изгиб называют плоским. Чистый изгиб, рассмотренный в предыдущем параграфе, является частным случаем плоского поперечного изгиба, при котором нагрузка состоит только из двух изгибающих пар. При поперечном изгибе в произвольном поперечном сечении стержня кроме изгибающего момента действуют поперечная сила Q, а иногда еще и продольная сила N. При отсутствии продольной силы связь между изгибающим моментом М, поперечной силой Q и интенсивностью поперечной нагрузки д определяется формулами (5.3) и (5.4), справедливыми всюду, кроме самих точек приложения сосредоточенных поперечных сил.  [c.127]

Рассмотрим балку, находящуюся в условиях плоского прямого изгиба под действием произвольных поперечных нагрузок в главной плоскости Оху (рис. 7.31, а). Рассечем балку на расстоянии л от ее левого конца и рассмотрим равновесие левой части. Влияние правой части в этом случае нужно заменить действием изгибающего момента и поперечной силы Qy в проведенном сечении (рис. 7.31,6). Изгибающий момент Мг в этом случае не является постоянным по величине, как это имело место при чистом изгибе, а изменяется по длине балки. Так как изгибающий момент согласно (7.14) связан с нормальными напряжениями а = С , то нормальные напряжения в продольных волок-  [c.136]

Рассмотрим плоский чистый изгиб прямого стержня. Если на его боковую поверхность нанести сетку в виде продольных и поперечных прямых (рис.8.2а), то при изгибе можно заметить следующее (рис.8.2б)  [c.108]

Обычная теория изгиба прямой балки исходит из так называемой гипотезы Бернулли о сохранении поперечными сечениями плоской фермы. Отсюда на основании закона Гука получается линейный закон (вернее плоскостной) распределения напряжений при изгибе. При этом обычно предполагается, что плоскость действия внешних сил проходит через ось балки. Если имеет место чистый изгиб, то плоскость действия внешних сил можно перемещать параллельно самой себе без изменения распределения напряжений в балке. Но это уже не имеет места в случае обыкновенного изгиба, при котором кроме изгибающих моментов в отдельных поперечных сечениях балки действуют еще и поперечные силы. В этом случае положение плоскости действия внешних сил имеет на распределение напряжений большое влияние. Спрашивается теперь, насколько правильно допущение, что при прохождении плоскости действия внешних сил через ось балки напряжения распределяются по сечению по закону прямой линии. В случае сечения с двумя взаимно перпендикулярными осями симметрии это допущение оправдало себя и подтвердилось опытами, результаты которых находятся в полном согласии с теорией. Так как на практике чаще всего применяются балки, профили которых имеют две оси симметрии, например балки с двутавровым сечением и т. д., то обычная теория изгиба балки, вообще говоря, хорошо согласуется с опытом. Но согласие теории с опытом имеет место и для сечений с одной осью симметрии, например для таврового, углового, коробчатого сечений и т. д., если только плоскость действия внешних сил совпадает с линией симметрии сечения. Если же мы имеем несимметричное сечение или сечение имеет одну ось симметрии, но  [c.130]

Поперечный изгиб балки вызывается внешними момента.ми, действующими в плоскости оси балки, или внешними силами, перпендикулярными к оси. Простой (прямой) изгиб получается, если изгибающий момент действует в плоскости, заключающей в себе главную ось поперечного сечения балки (главная плоскость балки). Косой изгиб получается, если изгибающий момент действует в плоскости, ке содержащей главной оси сечения, и может рассматриваться как сочетание изгибов в двух главных плоскостях. Чисты. изгибом на участке балки называется изгиб, при котором во всех сечениях участка балки изгибающий момент имеет постоянное значение (поперечная сила отсутствует).  [c.50]

Действительно, внешние силы лежат в плоскости гОу и при этом перпендикулярны оси Ог, следовательно, их проекции на оси Ох и Ог так же, как и моменты относительно осей Оу и Ог, равны нулю (см. также 1.4). Конечно, в частном случае может оказаться, что внешние силы, приложенные по одну сторону от рассматриваемого сечения, приводятся к паре сил, т. е. поперечная сила (Оу) равна нулю, и в поперечном сечении возникает только изгибающий момент (Мд.). Как указано выше, такой изгиб называют чистым в рассмат-рив аемом случае — чистым прямым изгибом. Общий случай пря-  [c.222]

При чистом прямом изгибе справедлива гипотеза Бернулли, т. е. поперечные сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к оси и после деформации.  [c.246]

Выражение (б) дает величину потенциальной энергии деформации изгиба бесконечно малого элемента балки. Оно получено для элемента, находящегося в условиях чистого изгиба. При поперечном изгибе, помимо изгибающих моментов, возникают поперечные силы, но при определении энергии деформации ими в подавляющем большинстве случаев можно пренебречь и считать зависимость (б) применимой во всех случаях прямого изгиба. Для вычисления энергии деформации балки в целом следует просуммировать значения по всей ее длине. При этом следует учесть, что закон изменения изгибающих моментов для отдельных участков балки различен, поэтому вычисление определенных интегралов надо вести отдельно для каждого участка длиной а затем результаты суммировать.  [c.286]


Следует заметить, что в данном случае нейтральный слой находится посредине высоты сечения потому, что балка имеет две оси симметрии. При другой форме поперечного сечения нейтральный слой может лежать ниже или выше середины сечения. Опыты показывают, что нейтральный слой в балках, испытывающих чистый прямой изгиб, расположен в плоскости, проходящей через центр тяжести сечения. В дальнейшем такой же вывод мы получим и теоретическим путем.  [c.118]

Положим, что балка изгибается двумя приложенными к ее концам парами сил (рис. 296), действующими в плоскости, проходящей через ее ось. При этом в поперечных сечениях балки возникнут только изгибающие моменты M , численно равные внешним моментам УИ, т. е. М =М. Как известно из предыдущего, такой изгиб называют чистым в поперечных сечениях балки возникают только нормальные напряжения. Установим зависимость между величинами этих нормальных напряжений и изгибающего момента. Выделим из балки по рис. 296 элемент abed, имеющий весьма малую длину в увеличенном масштабе этот элемент после деформации показан на рис. 297. Под действием приложенных парсил балка изогнется при этом первоначально прямая линия еп, представляющая собой проекцию нейтрального слоя на плоскость чертежа, обратится в некоторую кривую.  [c.285]

Несколько подробнее остановимся на частном случае рассмотренного вида нагружения, когда брус испытывает прямой изгиб и растяжение или сжатие. Аналогично предыдущему, такой вид деформации возникает как при нагружении бруса поперечными и осевой силами (рис. 2.144), так и при его нагружении одной вне-центренно приложенной осевой силой (рис. 2.145). Конечно, для того чтобы изгиб был прямым, точка приложения силы должна находиться на одной из главных центральных осей поперечного сечения. При нагружении по рис. 2.144 возникает поперечный изгиб, а по рис. 2.145—чистый, и если в первом случае надо выяснить, какое сечение опасно, то во втором все они равноопасны.  [c.293]

Задача о прямом изгибе может быть подразделена на две задачи чистый изгиб и поперечный изгиб. Прямым чистым изгибом называется деформирование балки (или ее части) под действием моментов Мх ф О, не зависящих от продольной координаты (рис. 12.1). При таком де(1юрмировании балки плоские до деформирования поперечные сечения остаются плоскими и после деформирования, а касательные напряжения в поперечных сечеяиях равны нулю (т = 0).  [c.246]

Рассмотрим чистый изгиб, когда бх = а = onst. Чистый прямой изгиб характеризуется тем, что на выпуклой стороне волокна растягиваются, а на вогнутой — сжимаются (рис. 12.5). Переход от растяжения к сжатию происходит непрерьшно и таким образом должен существовать нейтральный слой, длина которого не меняется. На рис. 12.5 он показан штрихпунктирной линией. Этот слой при чистом изгибе образует цилиндрическую поверхность. Образующие этой поверхности, лежащие в поперечных сечениях, называют нейтральными линиями.  [c.194]

При чистом изгиба (когда Q = 0) все слои по одну сторону от нейтрального слоя испытывают простое растяжение, а по другую— простоэ сжатие. Траектории главных напряжений превращаются при этом в два семейства прямых параллельных линий — продольных и поперечных (рис. 181).  [c.174]

Если при прямом или косом изгибе в поперечном сечении бруса действует только изгибающий момент, то соответственно имеется чистый прямой или чистый косой изгиб. Если же в поперечном сечении действует также и поперёчная сила, то имеется поперечный прямой или поперечный косой изгиб.  [c.227]

Выше было установлено что при- поперечном прямом изгибе в поперечных сечениях балки возникают нормальные и касательные напряжения. В частном случае, когда поперечная сила равна нулю, имеет место чистый изгиб ивпоперечных сечениях  [c.246]

Вьше было установлено, что при поперечном прямом изгибе в поперечных сечениях балки возникают нормальные и касательные напряжения. В частном случае, когда поперечная сила равна нулю, имеет место чистый изгиб и в поперечных сечениях балки касательные напряжения отсутствуют. Этот случай рассмотрим в первую очередь. Для выяснения закона распределения нормальных напряжений по поперечному сечению балки и вывода формулы, определяющей напряжение в произвольной точке поперечного сечения, будем исходить из следующих допущений.  [c.176]


Смотреть страницы где упоминается термин Прямой изгиб чистый и поперечный : [c.174]    [c.128]    [c.205]    [c.39]    [c.259]    [c.285]    [c.196]    [c.209]    [c.157]   
Смотреть главы в:

Техническая механика  -> Прямой изгиб чистый и поперечный



ПОИСК



Изгиб поперечный

Изгиб прямой

Изгиб прямой чистый

Изгиб чистый



© 2025 Mash-xxl.info Реклама на сайте