Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примеры на вращательное движение твердого тела

Примеры на вращательное движение твердого тела  [c.206]

Примеры на вращательное движение твердого тела.........................164  [c.7]

Выдающимся произведением по теоретической механике является курс Николая Егоровича для студентов МВТУ. Курс начинается с раздела Статика , изложенного элементарно геометрическим методом. В курсе представлено большое число конкретных технических задач. Разбору механической сути дела уделяется главное внимание. Особенно детально изложена глава о центрах тяжести и Графостатика — на эти разделы отведено более четырех печатных листов. Из кинематических вопросов наибольшее внимание уделено определению скоростей и ускорений точки, определению скоростей и ускорений точек тела при вращательном и плоскопараллельном движениях и добавочному (или кориолисову) ускорению. Очень интересен методически раздел, посвященный сложению движений твердого тела, иллюстрированный ясными, убедительными примерами. Механические модели заполняют страницы этой главы кинематики. Любителям общности и строгости следует рекомендовать эту главу курса для тщательного анализа, ибо опыт преподавания показывает, что от приведения пространственной системы скользящих векторов к простейшему виду и разбора правил сложения моторов (кинематических винтов) у студентов технической высшей школы почти не остается познаний закономерностей механического движения. Усложненная математическая форма съедает здесь физическое содержание понятий и теорем.  [c.129]


Сложение поступательного и вращательного движений. Винтовое движение. Рассмотрим сложное движение твердого тела, слагающееся из поступательного и вращательного движений. Соответствующий пример показан на рис. 235. Здесь относительным движением тела J является вращение с угловой скоростью ю вокруг оси Аа, укрепленной на платформе 2, а переносным-поступательное движение платформы со скоростью V. Одновременно в двух таких движениях участвует и колесо 3, для которого относительным  [c.238]

Движение тел существенным образом зависит от характера распределения масс. В этом мы уже убедились на ряде примеров. Так, спортсмен при прыжке в воду, группируясь (т. е. меняя распределение масс), увеличивает свою угловую скорость (см. пример на стр. 219), время установления угловой скорости ротора электромотора зависит от момента инерции ротора (см. пример на стр. 210), скорость вращения маховичка, которую необходимо сообщить ему для прекращения вращательного движения космического аппарата, зависит от соотношения моментов инерции (см. пример на стр. 221—222) и т. д. Поэтому изучение динамики твердого тела начинается, как правило, с вводной главы, посвященной геометрии масс. Из самого названия видно, что в этой главе изучается не движение твердого тела, а только характер распределения его массы.  [c.268]

Отсутствие любого из членов, включающих вязкость, в уравнении энергии для безвихревого установившегося или неустановившегося потока в действительности означает, что в любой области мгновенная скорость диссипации энергии, вызванной вязкостью, точно компенсируется мгновенной скоростью совершения работы вязких сил на границе этой области. В частности, если скорость обтекания безвихревым потоком твердого тела (поверхность которого движется в соответствии с теорией потенциального течения) постоянна, диссипация энергии во всей области потока в точности равна скорости, с которой совершается работа вязкого сдвига по движущейся поверхности твердого тела. Примерами безвихревого движения вязкой жидкости могут служить движение жидкости в неограниченном пространстве, вызванное вращением цилиндра бесконечной длины, и движение между концентрическими цилиндрами, вращающимися с угловыми скоростями, обратно пропорциональными квадратам их радиусов. Это простые вращательные движения, которые могут быть воспроизведены на практике, поскольку скорость, налагаемая твердой границей, постоянна.  [c.200]


Попробуем обобщить этот прием на произвольное плоское движение. Выделим отрезок АВ в рассматриваемом сечении твердого тела (рис. 1.11). Перевод сечения из положения 1 в положение 2 можно рассматривать как суперпозицию двух движений поступательного из 1 в 1 и вращательного из 1 в 2 вокруг точки А, называемой обычно полюсом (рис. 1.11а). Существенно, что в качестве полюса можно выбрать любую точку, принадлежащую сечению или даже лежащую в плоскости сечения вне его. На рис. 1.116, к примеру, в качестве полюса выбрана точка В. Обратите внимание длина пути  [c.11]

Наиболее распространенной причиной возникновения звука в среде является периодическое движение тел, погруженных в эту среду, и имеющее достаточно большую, частоту, например колебания ножки камертона, вращательное движение лопастей самолетного или корабельного винта и т. п. Однако звук возникает не только в этих случаях. Он возникает также при обтекании неподвижных твердых тел постоянным потоком (или, что все равно, при движении тел с постоянной скоростью), когда, казалось бы, нет причины для возникновения периодических явлений. Примером такого вида звукообразования может служить свист на растяжках самолетов, на снастях кораблей, звучание проводов и струн ( эолова арфа ), свисты при обтекании углов, щелей и т. п. При этом существенно, что способность той же, скажем, струны колебаться играет второстепенную роль, так как указанные звуки возникают и при обтекании неподатливых, твердых тел. Исходные причины звукообразования в этих случаях не связаны с колебаниями тел, а обусловлены явлениями вихреобразования при обтекании тел потоком. Соответствующий звук называют поэтому вихревым.  [c.127]

Трудности, возникающие при выводе самолета из штопора, связаны со сравнительно большой устойчивостью вращательного движения самолета, ак и всякого твердого тела. Такая устойчивость вращательного движения легко объясняется следующим простым примером. Пусть два груза 7 и 2 (рис. 8.16), соединенные стержнем, вращаются относительно оси 00. Если с помощью кратковременного импульса попытаться изменить положение оси вращения, грузы приобретают некоторую скорость АУ (рис. 8.16,а). Но после поворота грузов на 180° скорости их будут направлены против действия импульсов (рис. 8.16,б),что приведет к восстановлению первоначального положения оси, т. е. система стремится сохранить положение оси вращения.  [c.226]

Рассмотрим сложное движение твердого тела, слагающееся из поступательного и вращательного движений. Соответствующий пример показан на рис. 207. Здесь относительным движением тела I является вращение с угловой скоростью а вокруг оси Аа, укрепленной на платформе 2, а переносным— поступательное движение платформы со скоростью v. Одновременно в двух таких движениях участвует и колесо 3, для которого относительным движением является вращение вокруг его оси, а переносным — движение той же платформы. В зависимости от значения угла а между векторами w и V (для колеса этот угол равен 90°) здесь возможну три лyчa , 176  [c.176]

Уравнения (279) имеют точно форму уравнений Лагранжа, но Н теперь содержит также члены первой степени относительно скоростей. Движения не могут происходить точно в обратном порядке. Маятник, с которым соединен вращающийся волчок, имеет (как мы это уже видели в 22) для колебаний, при которых его центр тяжести движется по кругу, разные периоды колебаний для одного и для другого направлении обращения, в то время как волчок вращается в одну и ту же сторону. Совершенно аналогично этому потенциал электрических токов, если имеются постоянные магниты, содержит члены, линейные относительно сил тока или скоростей. От этого обстоятельства зависит электромагнитное вращение плоскости поляризации света. Эта поразительная аналогия, разумеется, не служит доказательством того, что при только что упомянутых физических явлениях действительно играют роль скрытые вращательные движения. Но эта аналогия может быть самым естественным образом объяснена этой гипотезой и указывает во всяком случае на то, что сравнительное изучение обоих родов явлений обещает объяснение дальнейших фактов. Движение твердого тела, рассматриваемое в описанном примере, является, между прочим, чистым моноциклом, если силы 9I и имеют как раз такие значения, что А иС меняются очень медленно в сравнении с В, в противном случае это — смешанный моноцикл.  [c.495]


Классификация кинематических пар по числу степеней свободы и числу связей. Числом степеней свободы механической системы называется число возможных перемещений системы. Для твердого тела, свободно движущегося в пространстве, число степеней свободы равно шести три возможных перемещения вдоль неподвижных координатных осей и три — вокруг этих осей. Для звеньев, входящих в кинематическую пару, число степеней свободы в их относительном движении всегда меньи1е шести, так как условия постоянного соприкасания звеньев кинематической пары уменьшает число возможных перемещений. По предложению В. В. Добровольского ) все кинематические пары подразделены по числу степеней свободы на одно-, двух-, трех-, четырех- и пятиподвижные. В табл. 1 даны примеры кинематических пар с их условными обозначениями но ГОСТ 2770-68, которые дополнены обозначениями, рекомендованиыми Международной организацией по стандартам (ИСО) ). Наиболее распространенными являются одноподвижные пары, которые представлены в трех вариантах. В поступательной паре относительное движение ее звеньев прямолинейно-поступательное, во вращательной паре — вращательное и в винтовой — винтовое, т. е. движение, при котором перемещения вдоль и вокруг какой-либо оси связаны между собой определенной зависимостью.  [c.21]

Для изучения сложных движений в кинематике применяют обгций прием расчленения движений на отдельные, более простые составляющие. Так, в кинематике абсолютно твердого тела, представляющего простейший пример сплошной среды, для описания общего случая движения пользуются приемом разложения его движения на две составляющие поступательную вместе с произвольно выбранной точкой тела — полюсом , и вращательную вокруг мгновенной оси, проведенной через полюс. При этом распределение скоростей в различных точках тела в данный момент определяется векторной суммой  [c.36]


Смотреть страницы где упоминается термин Примеры на вращательное движение твердого тела : [c.470]   
Смотреть главы в:

Курс теоретической механики Ч.1  -> Примеры на вращательное движение твердого тела



ПОИСК



Движение вращательное

Движение вращательное вращательное

Движение вращательное твердого тел

Движение вращательное твердого тела

Движение твердого тела

Движение твердых тел

Движение тела вращательное



© 2025 Mash-xxl.info Реклама на сайте