Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исследование движения с помощью уравнения кинетической энергии

Исследование движения с помощью уравнения кинетической энергии  [c.349]

ИССЛЕДОВАНИЕ ДВИЖЕНИЯ ЗВЕНА ПРИВЕДЕНИЯ ПРИ помощи УРАВНЕНИЯ КИНЕТИЧЕСКОЙ ЭНЕРГИИ  [c.61]

С помощью теоремы об изменении кинетической энергии решается как прямая, так и обратная задачи динамики. В дифференциальной форме теорема применяется для. того, чтобы найти по заданным силам ускорения точек системы (или наоборот), т. е. чтобы составить дифференциальные уравнения движения системы и интегрированием этих ураннений найти законы изменения скоростей и перемещений точек системы. Интегральная форма теоремы используется в тех случаях, когда при конечном перемещении системы заданы три из следующих четырех величин скорости, перемещения, силы, массы, а четвертая подлежит определению. Теорема чаще всего применяется для исследования движения механических систем с одной степенью свободы, т. е. систем, положение которых определяется одной координатой (линейной или угловой). Поэтому в данной главе мы будем рассматривать только такие системы.  [c.226]


Движение твердого тела. При исследовании движения твердого тела с помощью уравнений Лагранжа кинетическую энергию тела мы выражаем через лагранжевы координаты, выбранные для описания его положения и ориентации в пространстве. Те же формулы используются и при исследовании движения механических систем, содержащих твердые тела. Поэтому рассмотрим подробнее теорию движения твердого тела.  [c.104]

Истинные методы конечных элементов отличаются от подходов, в которых рассматривается разбиение масс, главным образом тем, что при разбиении конструкции жесткости элементов определяются посредством классических способов статических исследований самих элементов, а не в процессе идентификации конструкции [1.40—1.46]. На рис. 1.12, а показано несколько обычно используемых типов элементов. Каждый элемент определяется с помощью 6, 8, 16 или 20 точек или узлов, в которых задаются условия совместности для перемещений и нагрузок. Исходными переменными являются пространственные перемещения в этих узлах уравнения движения обычно записываются с помощью того или иного вариационного подхода. Энергия деформаций, вычисляемая для каждого элемента, выражается через все узловые перемещения каждому узлу приписывают некоторую массу, и кинетическую энергию выражают через узловые скорости. Поскольку разбивка на элементы производится с учетом геометрии конструкции, отпадает необходимость в процедуре задания жесткостей, а соответствующие члены уравнений вычисляются из непосредственного рассмотрения геометрии каждого элемента. Для адекватного представления сложной конструкции необходимо большое число узлов, поэтому главными вопросами в методе конечных элементов являются  [c.38]

Составление уравнений движения ротора произведем с помощью метода Лагранжа. Предварительно определим значения механической энергии системы. Ограничимся исследованием только режима установившихся колебаний, угловую скорость ротора будем считать постоянной. Составим выражения кинетической и потенциальной энергии системы.  [c.154]

О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]


Должна лежать в соприкасающейся плоскости той кривой, по которой располагается изогнутая ось, и когДа Бине (В1пе1) ввел уравнение моментов относительно касательной, то Пуассон на основании этого уравнения пришел к заключению,-что крутящий момент постоянен. Лишь постепенно возникло представление о двух изгибающих пара в двух главных плоскостях, и был найден способ определения меры закручивания. Когда эти элементы теории были получены, стало ясно, что, зная соотношения, связывающие, изгибающие и крутящие моменты с кривизной и степенью кручения и пользуясь обычными условиями равновесия, можно определить форму изогнутой оси, степень кручения стержня вокруг этой оси, а также растягивающую и Перерезы вающую силу в любом данном сечении. Изгибающие и крутящие. пары, а также растягивающая и перерезывающая силы, происходят от усилий, приложенных к, элементам поперечных сечений, и правильные выражения для этих пар и сил следует искать при помощи общей теории. Но здесь возникает затруднение, состоящее в том, Что общие уравнения применимы лишь тогда, когда смещения малы между тем для таких тел, как спиральные пружины, смещения ни в коем случае нельзя считать малыми. КирхГоф (КтеЬЬоК) первый преодолел Это затруднение. Он показал, что общие уравнения применимы со всей строгостью к малой части тонкого стержня, все линейные размеры которой того же порядка малости, что и диаметры, поперечного сечения. Он считал, что уравнения равновесия или движения такой части можно в первом приближении упростить, пренебрегая силами -инерции и массовыми силами. Исследования, содержащиеся в теории Кирхгофа, носят в значительной своей части кинематический, характер. Когда тонкий стержень подвергается изгибу и скручиванию, то каждый его элемент испытывает деформацию, аналогичную тем деформациям,. которые имеют место в призмах Сен-Венана но соседние элементы должны непрерывным образом переходить один в Другой. Для того чтобы выразить непрерывность этого рода, необходимы некоторые условия. Эти условия принимают форму диференциальных уравнений, которые связывают относительные смещения точек малой части стержня с относительными координатами этих точек и с величинами, которые определяют положение данной части относительно всего стержня в целом. Из этих диференциальных уравнений Кирхгоф получил картину деформации в элементе стерл я и нашел выражение для потенциальной энергии, отнесенной к единице -длины, через относительное удлинение, компоненты кривизны и степень кручения. Он получил уравнения равновесия и колебаний, варьируя функцию, Выражающую энергию. В случае, когда тонкий стержень подвергается действию внешних сил, приложенных лишь иа его концах, уравнения, которыми определяется форма изогнутой оси, идентичны, как показал Кирхгоф, с уравнениями движения тяжелого твердого тела вокруг неподвижной точки. Эта теорема носит название кинетической аналогии Кирхгофа .  [c.36]


Смотреть страницы где упоминается термин Исследование движения с помощью уравнения кинетической энергии : [c.854]    [c.579]   
Смотреть главы в:

Теория машин и механизмов  -> Исследование движения с помощью уравнения кинетической энергии

Теория механизмов  -> Исследование движения с помощью уравнения кинетической энергии

Теория механизмов и машин Издание 3  -> Исследование движения с помощью уравнения кинетической энергии



ПОИСК



Исследование движения звена приведения при помощи уравнения кинетической энергии

Исследование уравнений движения

Кинетическая энергия—см. Энергия

Кинетические уравнения

Уравнение энергии

Уравнения кинетической энергии

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)



© 2025 Mash-xxl.info Реклама на сайте