Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фрезерные Детали

Многие детали, в том числе детали сложной формы, могут быть обработаны на копировально-фрезерных станках по заранее изготовленным копирам или шаблонам (примерные схемы приведены в гл. VII). Чертежи деталей, предназначенных для изготовления на таких станках, ничем не отличаются от обычных и выполняются по общим правилам. Сами же копиры изготовляют, как правило, на основе того же чертежа.  [c.36]

Чертежи деталей с линейчатыми поверхностями. На рис. 170, а приведен чертеж детали со сложным спиральным очертанием. Торцовая поверхность ее цилиндрического элемента с одного конца ограничена сложной винтовой линейчатой поверхностью. На чертеже этой детали показан шаблон, который потребуется для фрезерования по одному из методов копирования на фрезерном станке. На рис. 170, б показана примерная схема обработки аналогичной детали.  [c.229]


Форма любой технической детали должна удовлетворять трем основным требованиям быть конструктивно обоснованной, технически осуществимой и экономически целесообразной. Наиболее целесообразной считается простейшая форма детали, обрабатываемые поверхности которой плоские или являются поверхностями вращения (их можно обрабатывать на фрезерном или токарном станке). Сложная форма детали, как правило, состоит из простых геометрических тел (призм, пирамид, цилиндров, конусов, сфер и торов), которые пересекаются между собой или плавно переходят друг в друга. В первом случае возникают линии пересечения. а во втором — линии перехода.  [c.105]

Влияние сил зажатия детали на ее точность особенно активно проявляется при обработке длинных рам, станин, плит. При обработке таких деталей на станках, например строгальных или фрезерных, прижимные планки надо располагать над точками опоры детали на столе или по крайней мере возможно ближе к опорам, так как деформация детали при этом уменьшается.  [c.60]

На рис. 126, показано высокопроизводительное фрезерование на продольно-фрезерном (а) и горизонтально-фрезерном (б) станках с применением поворотного стола 4, благодаря которому смена обработанных деталей 1, 2 производится во время фрезерования вспомогательное время затрачивается только на обратный отвод стола н поворот его, что не превышает 0,2—0,5 минуты на две детали.  [c.264]

Карусельно-фрезерные станки имеют круглые вращающиеся столы большого диаметра и один (рис. 127, а) или два (рис. 127, б) вертикально расположенных шпинделя. На этих станках обрабатываются плоские поверхности торцовыми фрезами. Детали устанавливают для обработки и снимают их по окончании обработки во время вращения стола таким образом, детали обрабатываются непрерывно. Если на  [c.264]

Барабанно-фрезерные станки служат для обработки параллельных плоскостей детали одновременно с двух сторон (рис. 127, в). Детали 2, подлежащие обработке, устанавливают на барабан 4, который вращается внутри станины, имеющей портальную форму. Фрезы 1 помещены на расположенных с двух сторон четырехшпиндельных бабках, с каждой стороны по две. Одна фреза с каждой стороны производит черновое фрезерование, другая — чистовое.  [c.265]

На участке I детали транспортируют в двух параллельных потоках, и обработка их производится двусторонними фрезерными стан-  [c.463]

При движении фрезерной головки назад (рабочий ход) одновременно фрезеруются четыре детали две начерно и две начисто. При последующем цикле начерно обработанные детали устанавливаются в приспособлении для чистового фрезерования, окончательно обработанные перемещаются на промежуточные позиции, а в приспособлении для черновой обработки устанавливаются новые детали.  [c.464]


На поворотном столе 2 детали поворачиваются на 180° и транспортером подаются на станок 5 для обработки противоположной стороны. При движении фрезерной головки станка 5 вперед (холостой ход) связанный с ней транспортер одновременно передвигает восемь деталей, две из которых передает на поперечный транспортер 4. По этому транспортеру детали перемещаются к. поворотному столу 5, поворачиваются на нем на 90° и далее подаются на станки 7 и 5 для фрезерования торцовых сторон, на станки 9 и 10 — для сверления и развертывания отверстий и на станок /7 —для нарезания резьбы.  [c.464]

При нарезании коротких остроугольных резьб широкое распространение получило фрезерование гребенчатой групповой фрезой на резьбофрезерных станках, причем ось фрезы устанавливается параллельно оси нарезаемой детали. При фрезеровании, кроме вращения фрезы и медленного вращения детали, необходимо обеспечить осевое перемещение фрезерной головки на шаг резьбы за один оборот детали.  [c.174]

Линин среза. Так в практике называют линии, получающиеся при плоском срезе заготовки детали (т. е. удалении части материала путем обработки на фрезерном или строгальном станке), поверхность которой ограничена соосными поверхностями вращения (см. рис. 4.2). Пример решения дан на рис. 4,43.  [c.100]

Менее рациональны конструкции деталей, ограниченные плоскими поверхностями. Рекомендуется плоскости располагать по нормали друг к другу. Детали изготавливаются из листов, полос и профильных прутков (проката) путем обработки на фрезерных, строгальных и плоскошлифовальных станках.  [c.164]

Система базирования элементов оборудования. Системы базирования отвечают за взаимное расположение всех элементов оборудования токарного станка, инструмента, инструментальной оснастки, технологической оснастки (приспособления) и детали в процессе обработки. Система базирования элемента создается описанным во фрезерной обработке методом, определяющим положение начала координат элемента и направления его осей X, У, 2.  [c.109]

Наряду с вертикально-фрезерными станками, предназначенными в основном для обработки сложных фасонных деталей, в том числе объемных профилей, созданы и показали высокую эффективность токарные и револьверные станки для обработки деталей типа тел вращения. На автоматизированных участках из станков с числовым программным управлением, состоящих из 10 и более станков, можно обрабатывать валы, фланцы, гильзы, стаканы, зубчатые колеса, кулачки и другие детали.  [c.173]

Простейшим из таких устройств является линейный интерполятор, который заменяет отрезки кривых прямыми (аппроксимация профиля производится прямыми линиями), причем уравнения прямых, по которым ведется расчет, задается программой. Отклонение действительного профиля детали от чертежного получается в этом случае значительным. Системы с линейной интерполяцией по двум координатам применяют в токарных станках. При объемной обработке на вертикально-фрезерных станках применяют системы с линейными интерполяторами для одновременного управления по трем координатам, не считая поворота стола. Чаще всего, однако, системы с линейными интерполяторами применяются, когда контур детали задан не кривыми, а отрезками прямых, расположенными под любыми углами к осям (рис. 106). Чтобы приблизить контур детали, описанный кривыми, к чертежному, нужно уменьшить интервалы интерполяции, но это увеличивает объем программы. Меньшую  [c.177]

Обычно начало координат детали совмещается с началом системы координат станка или привязывается к нему, поскольку отсчет перемещений ведется от начала системы координат станка. Однако на вертикально-фрезерных станках с импульсными системами управления отсчет координат ведется не от указанной точки, а от предыдущего положения. На рис. 147 цифрой 1 отмечено исходное положение, в которое выводится шпиндель в начале обработки. Отрезок 1—2 соответствует быстрому подводу фрезы, 2—3 — врезанию, 3—4 и последующие участки—рабочим перемещениям. Каждая обрабатываемая поверхность на чертеже задается базовыми и опорными точками, координаты которых в системе координат детали должны быть рассчитаны (это не относится к обработке деталей на станках позиционного управления координаты обрабатываемых отверстий имеются в этом случае на чертеже и нет необходимости проставлять для них дополнительные опорные точки).  [c.225]


В качестве примера рассмотрим фрезерно-копировальный станок, принципиальная технологическая схема которого приведена на рис. XIV.34. Копир 1 и обрабатываемая деталь 2 устанавливаются и закрепляются на столе 3 станка. Обработка детали производится фрезой 4, устанавливаемой в фрезерной головке 5, которая имеет жесткую связь с копировально-измерительным прибором 7. Чувствительным элементом прибора является палец 8, соприкасающийся с поверхностью копира. Сигналы копировально-  [c.306]

Обработка детали может производиться в полярной и прямоугольной системах координат. На рис. 5.9 приведена схема воспроизведения заданного контура фрезой 1 на детали 2, установленной на столе 3—4 фрезерного станка в прямоугольных координатах.  [c.111]

Кроме того, конструктивно нормализованный ряд универсальных станков, показанный на фиг. 112—115, принципиально отличается от конструктивно нормализованного ряда фрезерных станков, показанных на фиг. 116, тем, что рассматриваемый ряд универсальных станков дает возможность вести обработку одновременно нескольких поверхностей одной и той же детали с одной установки, что сближает эти станки со специальными. Фрезерные же станки конструктивно нормализованного ряда, показанные на фиг. 116, дают возможность обрабатывать только одну поверхность или несколько, но пространственно ограниченных.  [c.171]

При концентрации технологических операций наряду с многооперационными станками по обработке различных поверхностей детали параллельно в одну установку (каковы, например, одношпиндельные токарные полуавтоматы) применяются станки для обработки одной поверхности детали в несколько переходов последовательно (фрезерно-шевинговальные станки)  [c.447]

Если изменение конструкции детали исключается, то даже при сравнительно ограниченных масштабах производства снижение трудоемкости механической обработки часто может быть достигнуто и экономически оправдано применением многошпиндельных фрезерных станков. На фиг. 373  [c.461]

Типоразмеры образуются на основе размерных или других характеристик металлорежущих станков по размерам столов (фрезерные станки), наибольшему размеру обрабатываемой детали над станиной (токарные станки), наибольшему диаметру сверления в сплошном металле средней твердости (сверлильные станки) и т. д.  [c.220]

В барабанных станках со сменными шпиндельными коробками (рис. 113, г) шпиндельные коробки расположены в магазинах. Магазины бывают барабанного типа с числом коробок от четырех до шести или цепного типа с числом коробок до десяти с каждой стороны. Наличие большого числа коробок и высокой точности повторяемости их фиксации позволяет выполнять сверлильно-резьбонарезные, расточные, фрезерные операции (при установке рабочего стола с перемещением обрабатываемой детали в поперечном направлении относительно подачи). Компоновка станка, показанная на рис. ИЗ, г, позволяет также обрабатывать детали под углом к горизонтальной оси при использовании горизонтальных и наклонных силовых столов.  [c.188]

Таким образом, на основе ранее сформированных инструментальных блоков с параллельной работой инструментов имеется возможность получения двух вариантов схем станков в классе КШр (см. табл. 8). Это односторонние (вариант 4) и двусторонние агрегатные станки (вариант 5). В варианте 5 наряду с двусторонними применяются станки для односторонней обработки детали. Фрезерные, расточные и шли( вальные операции в этих вариантах могут выполняться на одних и тех же станках.  [c.199]

Фрезерные бабки. Фрезерные бабки предназначены для работы торцовыми фрезами. Бабки можно устанавливать на подвижных или неподвижных элементах станков, при этом движение подачи сообщают обрабатываемой детали или фрезерной бабке. Основные и присоединительные размеры фрезерных бабок регламентированы ГОСТ 21711—76, нормы точности — ГОСТ 22410—77.  [c.73]

При групповой наладке для обработки плоских поверхностей на фрезерных станках детали размещаются в групповом приспособлении так, чтобы обрабатываемые поверхности были расположены в одной плоскости. При этом обработка дёталей возмо.жна и одновременная, и раздельная.  [c.147]

Одной из наиболее простых систем является система управления прямоугольным циклом, использованная для фрезерных станков общего назначения моделей 6Л12П и 6Л82Г. При этой системе обработка осуществляется в процессе относительных перемещений инструмента и обрабатываемой детали эти перемещения происходят в прямоугольных координатах по заданной последовательности, причем в каждый момент обработка идет только по одной координате. Варианты прямоугольных циклов, определяемые последовательностью движений исполнительных органов, могут быть различны в зависимости от профиля обрабатываемой поверхности. Таким образом, можно обрабатывать на фрезерных станках разнообразные фасонные поверхности.  [c.288]

Задача 6.24. В системе гидропривода фрезерного станка насосом / через фильтр 2, регулируемые дроссели 5 и 4 и распределители 5 и 6 подается масло (р = 900кг/м ) к гидроцилиндрам 7 и 8, которые осуществляют подачу фрезерной головки и стола. Угол а К задаче 6.23 обработки детали 9 определяется соотношением скоростей  [c.115]

Создано специальное механообрабатывающее, сварочное, термическое и контрольное оборудование и приборы. Так, новые карусельные, расточные, фрезерные, строгальные и сверлильные станки необходимых размеров позволяют обрабатывать отдельные детали массой до 400 т. Эти станки, как правило, оснащены программным управлением, сложной гидравлической системой, позволяющей, в частности, иметь высокую точность выставки угловой координаты. Сварочные автоматические установки имеют сложные манипуляторы, приспособления для удаления шлака и пыли, регуляторы тока, напряжения, подачи электродов, флюсов, специальные инфракрасные нагреватели.  [c.238]

На рис. 9 представлено приспособление для обработки плоских поверхностей у деталей типа шайб, колец и т. п. [13]. Обработка производится на вертикально-фрезерном станке. Индуктор 3 с внутренним S и наружным N кольцевыми полюсами закрепляется в шпинделе станка 1 с помощью немагнитной оправки 2. Постоянный ток подводится к обмотке 4 электромагнита 5 через щетки 6, закрепленные в кронштейне 7. Обрабатываемые детали 5 укладывают на столе 9 в гнездах трафарета 10. Прокладкой И все приспособление изолировано от станка. Во время обработки шпиндель с электромагнитом вращается, а стол станка вместе с деталями совершает возвратнопоступательное движение. Зазор между сердечником и деталями заполняется порошком кермета ЭБМ40 + 80% ПЖМ зернистостью 125—200 мкм или ЭБ6+80% ПЖ/Н зернистостью 200—250 мкм для достижения 11-го класса чистоты и ЭБМ20 + 80% ПЖМ зернистостью 63—100 для получения 12-го класса. Процесс может осуществляться как всухую, так и в 5—10%-ном водном -растворе эмульсола Э-1 или Э-2, причем непрерывная подача эмульсии при  [c.32]


Рис. 147. Траектория перемещения шпинделя вертикально-фрезерного станка при контурной обработке плоской детали abed (3—4S—6 — эквидистанта, XY — основная, X F вспомогательная системы координат) Рис. 147. Траектория перемещения шпинделя <a href="/info/126438">вертикально-фрезерного станка</a> при контурной обработке плоской детали abed (3—4S—6 — эквидистанта, XY — основная, X F <a href="/info/426913">вспомогательная системы</a> координат)
Выдержка из карты программы обработки контура плоской детали на вертикально-фрезерном станке 6Н13ГЭ2  [c.226]

Рабочий день продолжался по существу непрерывно, очень часто ночевали на заводе. Инженерам приходилось решать сложные, весьма многообразные вопросы. Оборудование прибывало из многих городов и заводов, необходимо было оперативно (счет шел на часы) его поставить, отладить, одновременно выжать из станка наибольший выпуск. И вот в этих условиях ум, знание и опыт Г. А. Шаумяна были чрезвычайно полезны. Так, например, возникла серьезная проблема с фрезерными станками — их недоставало, а детали стрелкового оружия требовали многочисленных фрезерных операций. И Шаумян возглавляет работу по созданию специального фрезерного станка. Изготовление станка в металле шло практически одновременно с проектированием. И такой стапок был создан в течение короткого времени .  [c.49]

Рис. 5. Фрезерный автомат (а) и схема взаимного положения фрезерных шпиидс. ей и детали (б) Рис. 5. <a href="/info/54713">Фрезерный автомат</a> (а) и схема взаимного положения фрезерных шпиидс. ей и детали (б)
Затем штоки поступают в кантователь 9 для поворота на 180° и в токарный автомат 10 для предварительной обработки хвостовика штока с другой стороны. Далее штоки поступают в накопитель II и из него на следующую пару токарных автоматов 12 для прорезки канавок. После окончания операции по команде токарных автоматов 12 конвейеры загружают новые заготовки. При этом обработанные детали выталкиваются и поступают в магазины 13. Из магазинов штоки загружаются в приспособление фрезерного автомата 14 для фрезерования лысок. Обработанные штоки поступают в поперечный конвейер 15 для объединения двух параллельных потоков в один. После поперечного конвейера штоки попадают в моечносушильный автомат 16, в котором осуществляется горячая струйная промывка штоков и очистка их от частиц абразива, масла и стружки, а затем в следующей камере осушиваются теплым воздухом, подаваемым вентилятором через калорифер, встроенный в автомат.  [c.68]

На эскизе показан станок для обработки верхней плоской поверхности блока цилиндров.Силовой стол / сустановленной на нем фрезерной бабкой 2 перемещается навстречу направлению транспортирования деталей. При обратном ходе прикрепленная к столу штанга 3 конвейера захватывает детали и перемещает их вперед на один шаг. Преимущество упрощение конструкции конвейера. Недостаток увеличенное вспомогательное время из-за малой скорости перемещения конвейера, связанного с силовым столом  [c.58]

При наличии отдельного привода конвейера, не связанного с силовым столом, на силовой стол устанавливают фрезерную бабку с автоматическим отводом пиноли, что позволяет избежать повреждения обработанной поверхности детали зубьями фрезы при обратном ходе силового стола. Преимущества а) сокращение вспомогательного времени, б) сокращение длины рабочего хода, так как при применении фрезерной бабки с отскоком не требуется полностью выводить фрезу за пределы обрабатываемой поверхности детали. Недостатки а) усложнение конструкции конвейера б) усложнение конструкции фрезерной бабки На эскизе показан двухшпиндельный фрезерный станок для обработки нижней плоской поверхности блока цилиндров. Фрезерная бабка установлена на каретке, совершающей установочные перемещения по поперечным направляющим, выполненным на продольном силовом столе, направление перемещения которого параллельно направлению транспортирования детали. В рабочем переднем положении фрезерная бабка зажимается на направляющих силового стола с помощью двух гидроцилиндров для повышения жесткости системы. В каждом цикле фрезерная бабка по окончании обработки отводится в поперечном направлении на несколько миллиметров для смены фрез бабка может быть отведена на 300 мм. Преимущества а) удобство смены фрез б) сокращение вспомогательного времени в) сокраи(.ение длины рабочего хода. Недостаток усложнение конструкции станка  [c.58]


Смотреть страницы где упоминается термин Фрезерные Детали : [c.60]    [c.265]    [c.284]    [c.94]    [c.103]    [c.114]    [c.85]    [c.106]    [c.28]    [c.190]    [c.197]   
Машиностроение Энциклопедический справочник Раздел 4 Том 9 (1950) -- [ c.422 ]



ПОИСК



888, 889, 926 фрезерные



© 2025 Mash-xxl.info Реклама на сайте