Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь низколегированная - Свойства свойства

Следовательно, так как при pH =4ч-10 коррозия ограничена скоростью диффузии кислорода через слой оксида, небольшие изменения состава стали, термическая и механическая обработка ее не повлекут за собой изменений коррозионных свойств металла, пока диффузионно-барьерный слой остается неизменным. Скорость реакции определяют концентрация кислорода, температура или скорость перемешивания воды. Это важно, так как pH почти всех природных вод находится в пределах 4—10. Значит, любое железо, погруженное в пресную или морскую воду, будь то низко-или высокоуглеродистая сталь, низколегированная сталь, содержащая, например, 1—2 % Ni, Мп, Мо и т. д., ковкое железо, чугун, холоднокатаная малоуглеродистая сталь, будет иметь практически одинаковую скорость коррозии. Этот вывод подтверждается большим количеством лабораторных и промышленных данных для разнообразных типов железа и стали 111]. Некоторые из них приведены в табл. 6.1. Эти данные опровергают распространенное мнение, что ковкое железо, например, является более коррозионностойким, чем сталь.  [c.107]


Свойства легированных сталей в рабочих условиях определяются содержащимися в них углеродом и другими элементами, специально введенными в состав. Различают три группы легированных сталей низколегированные с суммарным содержанием легирующих добавок менее 2,5 % среднелегированные с 2,5— 10 % легирующих элементов и высоколегированные с содержанием легирующих элементов более 10 %. В зависимости от микроструктуры различают стали перлитного, мартенситного, мар-тенситно-ферритного, ферритного, аустенитно-мартенситного, аустенитно-ферритного и аустенитного классов. В котлостроении применяют стали двух классов перлитного и аустенитного.  [c.220]

По сравнению с углеродистыми сталями низколегированные стали имеют более высокие эксплуатационные свойства.  [c.227]

В связи с тем, что низколегированные стали (типа ИХ, 13Х) имеют практически ту же стоимость и обрабатываемость, что и углеродистые стали, но значительно лучшие закаливаемость, прокаливаемость и механические свойства, замена углеродистых сталей низколегированными всегда целесообразна.  [c.348]

Изложенное о допускаемых напряжениях справедливо при сварке мало- и среднеуглеродистых сталей, а также ряда конструкционных низколегированных, если механические свойства сваренных соединений из них удовлетворяют требованиям, приведённым в табл. 17,  [c.154]

Механические свойства стали низколегированной конструкционной  [c.32]

В металлургической промышленности хром добавляется в количестве до 3V-0 к низколегированным сталям для улучшения механических свойств и повышения способности принимать закалку. Стали этого типа, которые могут также содержать другие элементы, например молибден, никель, марганец и ванадий, используются в изделиях высокой прочности — для пружин, роликовых и шариковых подшипников, штампов и рельсов. Стали, содержащие 5—6% хрома, имеют повышенное сопротивление коррозии и находят применение в нефтеперерабатывающей промышленности.  [c.886]

Конструкционные строительные стали и сплавы. Свойства этих сталей и сплавов определяются в основном механическими (предел прочности, относительное удлинение, твердость, ударная вязкость) и технологическими (жидкотекучесть, свариваемость, ковкость и др.) характеристиками. Для конструкционных строительных сталей и сплавов используются углеродистые (0,10...0,20% С) и низколегированные (Si, Мп, Сг и др.) стали (ГОСТ 19281—89 и 19282—72). Эти стали, как правило, обыкновенного качества и поставляются по механическим свойствам.  [c.170]


Классификация по химическому составу предполагает разделение легированных сталей (в зависимости от вводимых элементов) на хромистые, марганцовистые, хромоникелевые, хромоникельмолибденовые и т. п. Согласно той же классификации стали подразделяют по общему количеству легирующих элементов в них на низколегированные (до 2,5% легирующих элементов), легированные (от 2,5 до 10%) и высоколегированные (более 10%). Разновидностью классификации по химическому составу является классификация по качеству. Качество стали — это комплекс свойств, обеспечиваемых металлургическим процессом, таких, как однородность химического состава, строения и свойств стали, ее технологичность. Эти свойства зависят от содержания газов (кислород, азот, водород) и вредных примесей — серы и фосфора.  [c.155]

ТМЛ-2 10,5 То же, для корневого слоя стыков труб из низколегированных сталей. Высокие сварочно-технологические свойства по стабильности дуги и отделимости шлака  [c.111]

Согласно ГОСТ 9466-75 электроды для сварки и наплавки сталей в зависимости от назначения разделены на классы для сварки углеродистых и низколегированных конструкционных сталей с < 600 МПа -У (условное обозначение) для сварки легированных конструкционных сталей с Qb > 600 МПа - Л для сварки теплоустойчивых сталей - Т для сварки высоколегированных сталей с особыми свойствами - В для наплавки поверхностных слоев с особыми свойствами - Н. Этот ГОСТ регламентирует размеры электродов, толщину и типы покрытий, условные обозначения, общие технические требования, правила приемки и методы испытания.  [c.36]

Электрошлаковая сварка. Электрошлаковую сварку широко применяют при изготовлении конструкций из толстолистовых низкоуглеродистых и низколегированных сталей. При этом равнопрочность сварного соединения достигается за счет легирования металла шва через электродную проволоку и перехода элементов из расплавляемого металла кромок основного металла. Последующая термообработка помимо снижения остаточных напряжений благоприятно влияет и на структуру и свойства сварных соединений.  [c.281]

СВАРКА НИЗКОЛЕГИРОВАННЫХ БЕЙНИТНО-МАРТЕНСИТНЫХ СТАЛЕЙ Состав и свойства сталей  [c.290]

В машиностроении основная доля легированных сталей — низколегированные стали универсального назначения. По стоимости и комплексу свойств в термически обработанном состоянии эти стали в наибольшей степени соответствуют требованиям обеспечения прочности и эксплуатационной надежности деталей машин.  [c.94]

Эти стали содержат до 5 % легирующих элементов (табл. 19.1), которые вводят для увеличения закаливаемости, прокаливаемости, уменьшения деформаций и опасности растрескивания инструментов. Хром — постоянный элемент низколегированных сталей. Для улучшения свойств в них дополнительно вводят марганец, кремний, вольфрам. Марганец  [c.610]

Повышение температур сказывается на изменении статических и циклических свойств металлов и, следовательно, на процессах местного упругопластического деформирования и разрушения. При температурах, когда фактор времени проявляется несущественно (при отсутствии выраженных деформаций ползучести), изменение сопротивления образованию трещин малоциклового разрушения описывается через изменение характеристик кратковременных статических свойств [6, 7]. При этом уменьшение долговечности с повышением температур до 350° С у малоуглеродистых и низколегированных сталей связывается с деформационным старением (особенно при температурах 250—300° С) и уменьшением исходной пластичности. У низколегированных теплостойких сталей при температурах до 400° С уменьшение долговечности в зонах концентрации напряжений для заданных уровней номинальных напряжений объясняется уменьшением сопротивления унругонласти-ческим деформациям (при одновременном повышении предельных пластических деформаций). У аустенитных нержавеющих сталей  [c.99]


Поскольку в морской атмосфере низколегированные стали часто в 2—10 раз более стойки, чем обычная углеродистая сталь, то интересно выяашть, почему это преимущество не сохраняется в условиях полного погружения. В воде нет тех особых условий, которые при экспозиции в атмосфере приводят к образованию основных солей и формированию защитной пленки продуктов коррозии. Защитные свойства пленок, образующихся на низколегированной и углеродистой сталях в морской воде, примерно одинаковы и проявляются в постепенном уменьшении скорости кор-, розии со временем, т. е. в замедлении доставки кислорода к катодным участкам поверхности металла.  [c.55]

В энергетическом машиностроении и особенно в иаротурбинной технике применяют более экономичные котельные низколегированные, теплостойкие стали, составы и свойства которых освещены в главе 2, Наряду с этими сталями в котлах высокого давления для перегревательных труб используют высоколегированные хромоникелевые стали аустенитного типа, рассматриваемые в настоящем разделе.  [c.158]

Низколегированная сталь является переходной между углеродистыми и легированными сталями. Она по своей основе соответствует малоуглеродистой стали (С 0,1—0,2%), легированной хромом, никелем, медью, ванадием, ниобием и другими элементами в небольших и микроскопических дозах (десятые и сотые доли процента). Микролегирование, незначительно удорожая сталь, значительно повышает ее прочность, хладо-, коррозиопно- и износостойкость по сравнению с углеродистыми сталями, сохраняя ее пластичные свойства и свариваемость.  [c.29]

Полособульб несимметричный для судостроения (ГОСТ 21937—76) поставляется шириной 50—240 ым и длиной 4—20 м из сталей ио ГОСТ 5521—76, ГОСТ 380—71 и низколегированных с механическими свойствами согласно табл. 24.  [c.40]

Большое распространение в последние годы получили малоуглеродистые низколегированные стали, прошедшие специальную термическую обработку — maгaglng (мартенситное старение). Эти стали отличаются высокими прочностными свойствами (предел текучести —62 кПмм и временное сопротивление —69 кПмм ) и стойкостью против хрупких разрушений при низких температурах они легко механически обрабатываются и свариваются в отожженном состоянии перед старением [85]. Одним из недостатков этих сталей является то обстоятельство, что они хорошо свариваются при небольших толщинах, если конструкция после сварки выдерживается при 300° С. Следует ожидать, что при сварке больших толщин для этих сталей возникнет ряд затруднений.  [c.333]

Сталь нержавеющая хромоникельмарганцовая 3 — 486, 490 Сталь низколегированная — Свойства 3 — 374 ---низколегированная МСт. 3 — Антикоррозийные свойства 13 — 645 — Механические свойства 13—645  [c.282]

Для борьбы с образованием трещин могут быть рекомендованы мероприятия как конструктивного характера (максимальное сокращение нахлёсточных и тавровых соединений за счёт преимущественного применения стыковых, правильное расположение швов и т. п.), так и технологического. К числу последних относятся а) тщательная подготовка металла к сварке б) подогрев металла перед сваркой (температура подогрева зависит от химического состава стали и для большинства марок углеродистых и низколегированных сталей колеблется в пределах 150—260° С) в) применение качественных электродов и кондиционных компонентов обмазок г) правильный подбор диаметра электрода, силы тока, скорости сварки, слойпости и калибра шва д) теплоизоляция металла (изоляция асбестом особенно тонких листов 8 <11,5 мм) равносильна подогреву их до 400° С е) медленное охлаждение после сварки ж) последующая термообработка — отжиг, который снимает закалочную структуру, понижает твёрдость зоны термического влияния и улучшает пластические свойства.  [c.428]

На рис. 1 показаны данные по устойчивости низколегированной стали 20ЮЧ в сравнении со сталью 20. Специфические свойства первой в частности, устойчивость против сероводородного растрескивания, в ряде случаев позволяют использовать ее для изготовления оборудования переработки сероводородсодержащего газа взамен дефицитных нержавеющих сталей типа Х17Н13М2Т. Однако для наиболее нагруженных и ответственных деталей вопрос материального оформления остается в значительной мере проблематичным. Прежде всего это относится к штуцерам и люкам аппаратов, являющихся концентраторами напряжений на корпусе сосудов. Учитывая, что одним из основных условий надежности материала против сероводородного растрескивания является минимальный уровень растягивающих напряжений, целесообразна разработка такой конструкции узлов, материальное и технологическое оформление которых позволило бы обеспечить это условие.  [c.81]

Из сталей наилучшей коррозионной стойкостью в этой среде обладают низколегированные хромомолибденовые, кремнемолибденовые и молибденовые. Хромоникелевые нержавеющие стали имеют худшие антикоррозионные свойства в связи с избирательным поглощением никеля, особенно при температурах более 500° С. Их длительная прочность заметно понижается при омыва-нии сплавом свинец—висмут [10].  [c.297]

Низколегированная m jJb. Сталь низколегированная сортовая и фасонная изготовляется по ГОСТ 19281—73, толстолистовая и н1ирокополосная универсальная — по ГОСТ 19282—73. Стандарты распространяются на сталь, применяемую в строительстве и машиностроении для сварных металлических конструкций и используемую в изделиях в основном без термообработкИ( Низколегированная сталь может применяться и для несварных конструкций, В зависимости от нормируемых механических свойств она поставляется по 15 категориям.Для категории 1 нормируется только химический состав, для категории 2 — химический состав и механические свойства при растяжении и изгибе в холодном состоянии для категории 3 — химический состав, указанные механические свойства и ударная вязкость при температуре + 20°С. Остальные категории отличаются по нормированию ударной вязкости при отрицательных температурах (от—20 до —70°С) и нормированию ударной вязкости после механического старения при температурах от + 20 до — 70° С.  [c.38]


Марки и механические свойства сортовой и фасонной низколегированной стали ГОСТ 19281—73 приведены в табл. II-I4. Сталь низколегированная юлстолистовая и широкополосная по ГОСТ 19282—73 указанных в табл. П-14 марок отличается от сортовой и фасонной несколько более высокими механическими свойствами в основном по ударной вязкости при отрицательных температурах.  [c.38]

Так как разрушениям при кавитационных воздействиях подвержены только поверхностные слои металла, входящие в непосредственный контакт с потоком жидкости, то имеется возможность увеличить срок службы за счет создания на поверхности детали износостойкого слоя необходимой толщины. При этом несущую конструкцию, воспринимающую механические нагрузки, целесообразно выполнять из технологичных недефицитных материалов (например, низколегированных сталей с повышенными механическими свойствами), а места, где наиболее вероятно появление кавитационных разрушений, покрывать защитным износостойким слоем. Это дает возможность при минимальном расходе высоколегированных до1рогостоящих нержавеющих сталей повы-шть эксплуатационную надежность деталей проточного тракта. В настоящее время имеется определенный опыт применения плакированных, облицованных и наплавленных деталей гидротурбин.  [c.41]

Электроды классифицируют по назначению и виду покрытия. По назначению стальные электроды подразделяют на пять классов для сварки углеродистых и низколегированных конструкционных сталей с 0е < 600 МПа, легированных конструкционных сталей с Qb > 600 МПа, легированных жаропрочных сталей, высоколегированных сталей с особыми свойствами и для наплав-. ки поверхностных слоев с особыми свойствами. Электроды для сварки конструкционных сталей делят на типы Э38, Э42,. .., Э150. Цифры в обозначении типа электродов обозначают ав наплавленного металла в 10 МПа. В обозначение типов электродов для сварки жаропрочных и высоколегированных сталей и наплавочных входит  [c.229]

В качестве двухфазных сталей для холодной штамповки чаще ис пользуют малоуглеродистые низколегированные стали с 0,06—0 12 % С 1—2 % Мп 0 5—1 5 % Si с небольшими добавками ванадия или подоб ные же стали но содержащие 0 5 % Сг и О 1—04 % Мо Легирование стали необходимо для получения при термической обработке мартенси та и мелкого зерна феррита После термической обработки стали имеют следующие механические свойства ат=300—450 МПа ав=600— 850 МПа 6=20—30 % а после штамповки ат=450—600 МПа  [c.163]

Прокаливаемость нетеплостойких инструментальных сталей (особенно углеродистых и низколегированных) — очень чувствительное свойство. Она относительно невелика и может заметно изменяться у разных плавок одной марки, что сказывается на качестве инструмента.  [c.377]

Остаточный аустеиит инструментальных сталей. Его влияние на свойства. Остаточный аустенит фиксируется в структуре закаленных сталей, содержащих более 0,4—0,5% С. Количество остаточного аустенита зависит от его состава, получаемого при нагреве до температуры закалки, условий охлаждения и в меньшей степени от величины зерна. Состав остаточного аустенита определяет его устойчивость при последующем отпуске. Он почти полностью превращается в результате нагрева при 200—350° С нетеплостойких углеродистых н низколегированных сталей и при 500—580° С теплостойких штамповых н быстрорежущих сталей, У полутеплостойких сталей с 6—18% Сг он устойчив до 450—500° С, вследствие чего практически полностью сохраняется при обработке на первичную твердость. Точно также он почти полностью сохраняется в структуре нетеплостойких многих полутеплостойких сталей после отпуска на высокую твердость и может значительно влиять на их основные свойства и почти не сохраняется в теплостойких и полутеплостойких сталях, обрабатываемых на вторичную твердость. Количество остаточного аустенита, присутствующего в инструментальных сталях различных классов после закалки, приведено ниже.  [c.381]


Смотреть страницы где упоминается термин Сталь низколегированная - Свойства свойства : [c.31]    [c.31]    [c.191]    [c.433]    [c.23]    [c.483]    [c.26]    [c.533]    [c.536]    [c.537]    [c.118]    [c.152]    [c.126]    [c.325]    [c.261]   
Машиностроение Энциклопедический справочник Раздел 4 Том 13 (1949) -- [ c.645 ]



ПОИСК



Влияние отдельных технологических факторов производства низколегированных сталей на свойства

Влияние элементов на свойства низколегированных сталей

МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛЕЙ, НЕ ВКЛЮЧЕННЫХ В МАРОЧНЫЕ ТАБЛИЦЫ Прочность при растяжении низколегированных и легированных сталей марок

Механические свойства хладостойких низколегированных сталей (аналитический обзор литературы)

Низколегированная сталь 291—304

Низколегированная сталь для армирования железобетонных конструкций — Механические свойства 294 Химический состав

Низколегированная сталь для армирования железобетонных конструкций — Механические свойства 294 Химический состав отливк

Состав и свойства низколегированных сталей

Стали низколегированные строитель гарантируемые свойства сталей повы

Сталь Свойства

Сталь аустенитного класса — Коэфициент обрабатываемости 30 — Механические свойства низколегированная

Сталь низколегированная - Свойства

Сталь низколегированная - Свойства

Сталь низколегированная МСт. 3 - Антикоррозийные свойства

Сталь прокатная низколегированная механические свойства, коррозионные свойства, термическая обработка

Структура и свойства сварных соединений углеродистых и легированных сталей Кристаллизация наплавленного металла сварных соединений углеродистых и низколегированных перлитных сталей



© 2025 Mash-xxl.info Реклама на сайте