Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон движения твёрдого тела или точки

Закон движения твёрдого тела или точки см. Движение твёрдого тела и Движение частицы (точки)  [c.648]

Задать закон движения твёрдого тела - значит, получить такое соотношение, которое позволяло бы определить положение любой точки твёрдого тела в любой момент времени. Возникает вопрос сколько степеней свободы у твердого тела Для ответа на этот вопрос рассмотрим твердое тело в двух системах координат (Рис.3.1) -неподвижной (не штрихованной) и подвижной, связанной с твердым телом (штрихованной).  [c.28]


Это есть диференциальное уравнение вращательного движения твёрдого тела вокруг неподвижной оси. Это уравнение аналогично основному уравнению динамики точки, выражающему второй закон Ньютона, но только вместо массы в это уравнение входит момент инерции тела, вместо линейного ускорения— угловое ускорение тела и вместо силы (или суммы сил) — сумма моментов приложенных к телу сил относительно оси вращения.  [c.385]

Для любой материальной системы дифференц. ур-ния движения находятся как следствие пз 2-го и 3-го законов Д. В частности, для абсолютно твёрдого тела в зависимости от вида его движения получаются таким путём след, результаты. Если тело движется поступательно, то дифференц. ур-ния его движения имеют вид ур-ний (2), где только т — масса всего тела, х, у, z координаты его центра масс. Если тело вращается вокруг неподвижной оси, то дифференц. ур-ние его движения имеет вид  [c.616]

Поступательное движение твердого тела. Рассмотрим твёрдое тело, как показано на Рис. 3.13. Оси и х параллельны в любой момент времени. Закон движения при поступательном движении описывается законом движения любой точки тела  [c.40]

Как известно, тепловое движение атомов твёрдого тела рассматривают как совокупность нормальных малых колебаний кристаллической решётки. В квантовой теории вместо этих колебаний вводится понятие о фононах как о некоторых распространяющихся по решетке квазичастицах, обладающих определенными энергиями и направлениями движения. Если частота возбуждающего света попадает в область прозрачности кристалла, то в результате взаимодействия света с веществом происходит рассеяние с той же частотой или с изменённой частотой. Процессы рассеяния света в теории рассматриваются как процессы второго порядка, проходящие через промежуточные виртуальные состояния. При релеевском рассеянии процессы поглощения и излучения когерентно связаны такое рассеяние является упругим соударением фотона с атомами кристалла. При комбинационном рассеянии происходит неупругое столкновение фотона с фононами. Из-за изменения частоты когерентность нарушается, однако сохраняются кинематические соотношения, обусловленные выполнением законов сохранения энергии и импульса.  [c.14]

Рассмотрим систему, включающую абсолютно твёрдый однородный шар радиуса а, имеющий массу т, и материальную точку, масса которой равна шь Гравитационное взаимодействие однородного шара и материальной точки по закону Ньютона позволяет изучать движение центра шара и материальной точки в условиях задачи двух тел.  [c.252]


Пусть точки О и А остаются неподвижными придвижении тела (Рис.3.5). Ось, проходящая через эти неподвижные точки, называется осью вращения. Для задания закона движения твёрдого тела в этом случае достаточно задать закон вращения оси  [c.32]

Эта теорема справедлива также для движения системы относительно осей, перемещающихся поступательно вместе с центром масс. И.ч теоремы вытекает закон сохранения гл. момента количеств движения если сумма моментов внеш. сил относительно данного центра (пли оси) равна пулю, то гл. момент количеств движения системы относительно этого центра (или оси) остаётся всё время величиной постоянной. Теорема применяется при изучении движения твёрдого тела, в частности в теории гироскопов, в теории удара, при н. ученли движения планет, в теории турбин.  [c.617]

Шум 1 jf свя зывают с наличием в реальных твёрдых телах той или иной неупорядоченности и связанного с ней чрезвычайно широкого спектра (иерархии) времён релаксации т. Такой широкий спектр т и требуемая для получения закона S (/) с/О 1 // ф-цня распределения т возникают, если т экспоненциально зависит от параметра (энергии активации в случае активац. переходов между состояниями системы, туннельного показателя в случае туннельных переходов), ф-ция распределения к-рого более или менее постоянна в широких пределах изменения этого параметра. То, что шум 1 if обусловлен суперпозицией процессов с разл. временами релаксации, продемонстрировано на опыте в субмикронных МДП-транзисторах (см. Полевой транзистор), в к-рых имеется одна активная ловушка для носителей тока (или две ловушки), спектральная плотность флуктуаций сопротивления канала имеет лоренцевский профиль с одним т (или соответственно два таких профиля с двумя различными т), но при увеличении размеров транзистора и числа ловушек спектральная Ллотность приближается к I //. Магн. шум (флуктуации намагниченности) со спектральной плотностью I //, наблюдаемый в спиновых стёклах и аморфных ферромагнетиках (см. Аморфные магнетики), соответствует наличию в них (и известной из др. опытов) обширной иерархии высот барьеров (энергий активации), разделяющих метастабильные состояния, между к-рыми каждая такая система соверииет переходы в процессе релаксации и теплового движения. В тех случаях, когда механизм шума 1 // понятен (как в спиновых стёклах и неупорядоченных средах с двухуровневыми туннельными системами), мин. его частота (обратное наибольшее х) столь мала (напр., меньше обратного времени существования Вселенной), что попытки её измерения не имеют смысла. Механизмы шума 1 // в объёме полупроводников пока достоверно не установлены, хотя в литературе предложен ряд теорий.  [c.325]

Если систему векторов /и, т. е. количеств движения частиц твёрдого тела, мы обозначим через 5, а систему векторовт. е. приложенных к телу сил, обозначим через Е, то высказанный закон согласно формуле (31.25) на стр. 311 символически выразится так  [c.501]

Примером 3. 1Г. может служить голограмма точечного источника особенностью голограммы как 3. н. является то, что переход от темного поля к светлому осуществляется не скачком, а плавно, приблизительно по синусоидальному закону. Аналогичные устройства могут быть созданы и в диапазоне радиоволн, где благодаря значительно большим длинам волн реализация описанного принципа упрощается и оказывается возможным создание направленных излучателей типа зонных антенн. Л. Н. Капорский. ЗОННАЯ ТЕОРИЯ — один из осн. разделов квантовой теории твёрдых тел. 3. т. описывает движение электронов в кристаллах и является основой совр. теории металлов, полупроводников и диэлектриков [1—4].  [c.89]

МАТЕРИАЛЬНАЯ ТОЧКА — понятие, вводимое в механике для объекта бесконечно малых размеров, имеющего массу. Положение М. т. в пространстве определяется как положение геом. точки, что существенно упрощает решение задач механики. Практически всякое тело можно рассматривать как М. т. в случаях, когда расстояния, проходимые точками тела, очень велики по сравнению с его размерами. Кроме того, при изучении движения любой механич. систе.мы (в частности, и твёрдого тела) закон движения её центра масс (центра тяжести) находится как закон движения М. т., имеющей массу, равную массе системы, и находящейся под действием всех внеш. сил, приложенных к системе.  [c.65]


Эфф. методы изучения равновесия и движения несвободной механич. системы (см. Связи механические) дают вариационные принципы механики, в частности возможных перемещений принцип, найм, действия принцип, а также Д Аламбера принцип. При решении задач М. широко используют вытекающие из её законов или принципов дяфференц. ур-ния движения материальной точки, твёрдого тела и системы материальных точек, в частности ур-ния Лагранжа, канонич. ур-ния, ур-ния Гамильтона — Якоби, а в М. сплошной среды — соответствующие ур-ния равновесия или движения этой среды, ур-ние неразрывности (сплошности) среды и ур-ние энергии.  [c.127]

УПРОЧНЕНИЕ металлов, повышение сопротивляемости металлов и сплавов лластич. деформации или разрушению в результате затруднения движения дислокаций и их размножения. У. явл. лроцессом повышения предела текучести при пластич. деформации. УПРУГАЯ ДЕФОРМАЦИЯ, см. Деформация механическая. УПРУГИЕ ВОЛНЫ, упругие возмущения, распространяющиеся в твёрдой, жидкой и газообразной средах, напр, волны, возникающие в земной коре при землетрясениях, звук, и ультразвук, волны в жидкостях, газах и ТВ. телах. При распространении У. в. в среде возникают механич. деформации сжатия и сдвига, к-рые переносятся волной из одной точки среды в другую. При этом имеет место перенос энергии упругой деформацид в отсутствие потока в-ва (исключая особые случаи, напр, акустические течения). Всякая гармонич. У. в. характеризуется амплитудой колебательного смещения частиц среды и его направлением, колебательной скоростью частиц, переменным механич. напряжением и деформацией (к-рые в общем случае явл. тензорными величинами), частотой колебаний ч-ц среды, длиной волны, фазовой и групповой скоростями, а также законом распределения смещений и напряжений по фронту волны.  [c.787]


Смотреть страницы где упоминается термин Закон движения твёрдого тела или точки : [c.147]    [c.620]    [c.25]    [c.127]    [c.196]    [c.207]    [c.159]    [c.506]    [c.100]    [c.128]   
Теоретическая механика (1970) -- [ c.0 ]



ПОИСК



Движение твердого тела

Движение твердых тел

Закон движения

Закон движения твёрдого тела или

Закон движения твёрдого тела или тела» и «Движение частицы (точки)

Закон твердого тела

Закон точки

Точка Закон движения

Точка — Движение



© 2025 Mash-xxl.info Реклама на сайте