Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон движения твёрдого тела или

Закон движения твёрдого тела или точки см. Движение твёрдого тела и Движение частицы (точки)  [c.648]

Это есть диференциальное уравнение вращательного движения твёрдого тела вокруг неподвижной оси. Это уравнение аналогично основному уравнению динамики точки, выражающему второй закон Ньютона, но только вместо массы в это уравнение входит момент инерции тела, вместо линейного ускорения— угловое ускорение тела и вместо силы (или суммы сил) — сумма моментов приложенных к телу сил относительно оси вращения.  [c.385]


Действие ударных сил на твёрдое тело. Применим к твёрдому телу, подвергающемуся действию ударных сил, закон изменения количества движения [формула (56.50) на стр. 629] и закон изменения кинетического момента относительно произвольного (неподвижного или подвижного) центра [формула (56.52) на стр. 630] мы получим  [c.636]

Как известно, тепловое движение атомов твёрдого тела рассматривают как совокупность нормальных малых колебаний кристаллической решётки. В квантовой теории вместо этих колебаний вводится понятие о фононах как о некоторых распространяющихся по решетке квазичастицах, обладающих определенными энергиями и направлениями движения. Если частота возбуждающего света попадает в область прозрачности кристалла, то в результате взаимодействия света с веществом происходит рассеяние с той же частотой или с изменённой частотой. Процессы рассеяния света в теории рассматриваются как процессы второго порядка, проходящие через промежуточные виртуальные состояния. При релеевском рассеянии процессы поглощения и излучения когерентно связаны такое рассеяние является упругим соударением фотона с атомами кристалла. При комбинационном рассеянии происходит неупругое столкновение фотона с фононами. Из-за изменения частоты когерентность нарушается, однако сохраняются кинематические соотношения, обусловленные выполнением законов сохранения энергии и импульса.  [c.14]

Эта теорема справедлива также для движения системы относительно осей, перемещающихся поступательно вместе с центром масс. И.ч теоремы вытекает закон сохранения гл. момента количеств движения если сумма моментов внеш. сил относительно данного центра (пли оси) равна пулю, то гл. момент количеств движения системы относительно этого центра (или оси) остаётся всё время величиной постоянной. Теорема применяется при изучении движения твёрдого тела, в частности в теории гироскопов, в теории удара, при н. ученли движения планет, в теории турбин.  [c.617]

Для деформируемых твёрдых тел, жидкостей и газов дифференц. ур-ния движения являются ур-ниямц в частных производных. При решении задач Д. к ним должны присоединяться ур-ние, выражающее закон постоянства масс, и ур-ния, характеризуюгцие иек-рые физ. свойства среды (папр., зависимость для данной среды плотности от давления или напряжений от деформаций и т. п.).  [c.616]


Эфф. методы изучения равновесия и движения несвободной механич. системы (см. Связи механические) дают вариационные принципы механики, в частности возможных перемещений принцип, найм, действия принцип, а также Д Аламбера принцип. При решении задач М. широко используют вытекающие из её законов или принципов дяфференц. ур-ния движения материальной точки, твёрдого тела и системы материальных точек, в частности ур-ния Лагранжа, канонич. ур-ния, ур-ния Гамильтона — Якоби, а в М. сплошной среды — соответствующие ур-ния равновесия или движения этой среды, ур-ние неразрывности (сплошности) среды и ур-ние энергии.  [c.127]

В твёрдых (кристаллич.) телах тепловое движение атомов представляет собой малые колебания вблизи определ. положений равновесия (узлов кристаллич. решётки). Каждый атом обладает, т. о., тремя колебат. степенями свободы, и, согласно закону равнораспределения, мольная Т. твёрдого тела (Т, кристаллич. решётки) должна быть равной 3 ft, где п — число атомов в молекуле. В действительности, однако, это значение — лишь предел, к к-рому стремится Т. твёрдого тела при высоких темп-рах. Он достигается уже при обычных темп-рах у мн. элементов, в т. ч- у металлов (п=1, т.н. Дюлонга и Пти закон) и у нек-рых простых соединений [Na l, MnS (и = 2), РЬСЬ (л = 3) и др.] у сложных соединений этот предел фактически не достигается, т. к, раньше наступает плавление вещества или его разложение.  [c.77]

Шум 1 jf свя зывают с наличием в реальных твёрдых телах той или иной неупорядоченности и связанного с ней чрезвычайно широкого спектра (иерархии) времён релаксации т. Такой широкий спектр т и требуемая для получения закона S (/) с/О 1 // ф-цня распределения т возникают, если т экспоненциально зависит от параметра (энергии активации в случае активац. переходов между состояниями системы, туннельного показателя в случае туннельных переходов), ф-ция распределения к-рого более или менее постоянна в широких пределах изменения этого параметра. То, что шум 1 if обусловлен суперпозицией процессов с разл. временами релаксации, продемонстрировано на опыте в субмикронных МДП-транзисторах (см. Полевой транзистор), в к-рых имеется одна активная ловушка для носителей тока (или две ловушки), спектральная плотность флуктуаций сопротивления канала имеет лоренцевский профиль с одним т (или соответственно два таких профиля с двумя различными т), но при увеличении размеров транзистора и числа ловушек спектральная Ллотность приближается к I //. Магн. шум (флуктуации намагниченности) со спектральной плотностью I //, наблюдаемый в спиновых стёклах и аморфных ферромагнетиках (см. Аморфные магнетики), соответствует наличию в них (и известной из др. опытов) обширной иерархии высот барьеров (энергий активации), разделяющих метастабильные состояния, между к-рыми каждая такая система соверииет переходы в процессе релаксации и теплового движения. В тех случаях, когда механизм шума 1 // понятен (как в спиновых стёклах и неупорядоченных средах с двухуровневыми туннельными системами), мин. его частота (обратное наибольшее х) столь мала (напр., меньше обратного времени существования Вселенной), что попытки её измерения не имеют смысла. Механизмы шума 1 // в объёме полупроводников пока достоверно не установлены, хотя в литературе предложен ряд теорий.  [c.325]

У. в. в твёрдых телах. Энергия и давление в твёрдых телах имеют двоякую природу они связаны с тепловым движением и с взаимодействием ч-ц (тепловые и упругие составляющие). Теория междучастичных сил не может дать общей зависимости упругих составляющих давления и энергии от плотности в широком диапазоне для разных в-в, и, следовательно, теоретически нельзя построить функцию е(р/р). Поэтому ударные адиабаты для твёрдых (и жидких) тел определяются из опыта или полуэмпириче-ски. Для значит, сжатия твёрдых тел нужны давления в миллионы атмосфер, к-рые сейчас достигаются при эксперимент. исследованиях. На практике большое значение имеют слабые У. в. с давлениями 10 —10 атм. Это давления, к-рые развиваются при детонации, взрывах в воде, ударах продуктов взрыва о преграды и т. д. Повышение энтропии в У. в. с такими давлениями невелико, и для расчёта распространения У. в. обычно пользуются эмпирич. ур-нием состояния типа /> Л[(р/ро)"—1], где величина А, вообще говоря, зависящая от энтропии, так же, как и п, считается постоянной. В ряде в-в — железе, висмуте и др. в У. в. происходят фазовые переходы — полиморфные превращения. При небольших давлениях в твёрдых телах возникают упругие волны, распространение к-рых, как и распространение слабых волн сжатия в газах, можно рассматривать на основе законов акустики.  [c.779]


УПРОЧНЕНИЕ металлов, повышение сопротивляемости металлов и сплавов лластич. деформации или разрушению в результате затруднения движения дислокаций и их размножения. У. явл. лроцессом повышения предела текучести при пластич. деформации. УПРУГАЯ ДЕФОРМАЦИЯ, см. Деформация механическая. УПРУГИЕ ВОЛНЫ, упругие возмущения, распространяющиеся в твёрдой, жидкой и газообразной средах, напр, волны, возникающие в земной коре при землетрясениях, звук, и ультразвук, волны в жидкостях, газах и ТВ. телах. При распространении У. в. в среде возникают механич. деформации сжатия и сдвига, к-рые переносятся волной из одной точки среды в другую. При этом имеет место перенос энергии упругой деформацид в отсутствие потока в-ва (исключая особые случаи, напр, акустические течения). Всякая гармонич. У. в. характеризуется амплитудой колебательного смещения частиц среды и его направлением, колебательной скоростью частиц, переменным механич. напряжением и деформацией (к-рые в общем случае явл. тензорными величинами), частотой колебаний ч-ц среды, длиной волны, фазовой и групповой скоростями, а также законом распределения смещений и напряжений по фронту волны.  [c.787]


Смотреть страницы где упоминается термин Закон движения твёрдого тела или : [c.484]    [c.620]    [c.127]    [c.196]    [c.207]    [c.425]    [c.100]    [c.14]   
Теоретическая механика (1970) -- [ c.0 ]



ПОИСК



Движение твердого тела

Движение твердых тел

Закон движения

Закон движения материальной точк твердого тела

Закон движения твёрдого тела или в относительном движении

Закон движения твёрдого тела или в относительном движении вокруг центра масс

Закон движения твёрдого тела или вокруг центра масс

Закон движения твёрдого тела или при ударе

Закон движения твёрдого тела или тела» и «Движение частицы (точки)

Закон движения твёрдого тела или точки

Закон движения твёрдого тела количества движения

Закон твердого тела

Изучение движений неголономных систем на основе общих законов динамики. Классические задачи о качении твердого тела по поверхности

Отдел II КИНЕМАТИКА АБСОЛЮТНО ТВЁРДОГО ТЕЛА Координаты твёрдого тела. Конечные уравнения движения (закон движения)

Твердое тело - Воспроизведение закона движения 432 - Энергия деформации



© 2025 Mash-xxl.info Реклама на сайте