Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы Взаимодействие с элементарными газам

Следствием ограниченных сведений об элементарных актах взаимодействия металла с газо-паровой средой (влажным воздухом) является сугубо эмпирический подход к оценке влияния климата на коррозионную стойкость металлов. Несмотря на определенные и заметные успехи в этой области, основным методом оценки скорости коррозии метал-  [c.153]

Под термином водородопроницаемость обычно понимают целый комплекс элементарных физико-химических процессов, сводящихся в конечном счете к проникновению газа через металл. Диффузия как таковая входит одной из составляющих в этот комплекс процессов. Инертные газы практически не диффундируют ни в одном металле. Процессу диффузии предшествует активированная адсорбция водорода на поверхности металла. Адсорбция обусловлена интенсивными силами химического взаимодействия. Диффузия водорода в металлах самая интенсивная, по сравнению с другими газообразными элементами такими, например, как кислород, азот. Легкость осуществления процесса диффузии водорода в большинстве металлов объясняется соотношением размеров его атома и параметров кристаллической решетки металла.  [c.341]


Разделение общей реакции взаимодействия расплава с металлом на две сопряженные реакции окисления и восстановления, протекающие в разных элементарных актах, является основным отличием электрохимического механизма взаимодействия от химического. При этом металлы окисляются, а компоненты расплавленного покрытия восстанавливаются. Продукты реакций отлагаются или остаются на поверхности металлов, или находятся в той или иной форме в расплаве, ийи, наконец, удаляются из системы в виде паров и газов.  [c.216]

Строение внешних электронных оболочек атомов главных подгрупп полностью определяет кристаллическую структуру соответствующих элементов. Щелочные металлы, ато мы которых пои образовании кристалла вследствие низкого значения первого ионизационного потенциала легко теряют единственный слабо связанный валентный -электрон, образуют положительные однократно заряженные ионы с полностью заостренными р -подоболочками. Взаимодействие этих положительных ионов с электронным газом, образующимся из отделившихся х-электронов, обусловливает металлическую связь, сближающую ионы друг с другом. Орбитальное взаимодействие р -под-оболочек соседних ионов или, иначе говоря, перекрытие эллипсоидальных р-облаков своими внешними концами приводит вследствие ортогональности р-орбит, располагающихся по трем осям прямоугольных координат, к организации таких ионов в простую кубическую решетку. Внутри этого элементарного куба остается пространство, достаточное для размещения в нем еще одного иона, и таким образом, образует-  [c.397]

Все результаты, изложенные выше, относятся к изотропной ферми-жидкости. Для того чтобы понять, что представляют собой электронные спектры металлов, выключим сначала взаимодействие электронов, или, точнее, рассмотрим газ из невзаимодействующих электронов, находящихся в усредненном периодическом поле. Состояния одной частицы в таком поле были рассмотрены в гл. I. Там было продемонстрировано, что энергетические уровни образуют зоны, разделенные запрещенными участками (энергетическими щелями). Каждая зона имеет 2ЛГ состояний, где N — число элементарных ячеек в образце.  [c.28]

Рассмотрим вначале реакции, приводящие к образованию пленок на поверхности твердого тела, поскольку они довольно хорошо изучены. Такие реакции происходят при взаимодействии твердого тела с жидкостью или газом в наиболее простых случаях —это процессы образования соединений из твердых тел элементарного состава. Типичным примером подобных реакций может служить окисление металлов. Значение процессов переноса в этих и других реакциях с участием твердой фазы можно проиллюстрировать на примере классического, но очень простого исследования реакции сульфидирования металлического серебра, выполненного много лет назад Вагнером.  [c.162]


Взаимодействие металла с элементарными газами. Мерилом сродства металла с газами служит значение свободной энергии реакций взаимодействия между ними. Для этой же цели может быть приближённо принята теплота взаимодействия. По мере утраты металлических свойств и возникновения металлоидных особенностей металлы обнаруживают всё меньшее сродство к элементарным газам.  [c.173]

ФЁРМИ-ГАЗ—газ из частиц с полуцелым (в единицах Л) спином, подчиняющихся квантовой Ферми—Дирака статистике. Ф.-г. из невзаимодействующих частиц наз. идеальным, а в отсутствие внеш. полей—свободным. К Ф.-г. относятся электроны в металлах и полупроводниках, газы из атомов с нечётным числом нуклонов (напр., Не) электроны в атомах с большими атомными номерами, изучаемые в Томаса—Ферми теории нуклоны в тяжёльсх сильно возбуждённых ядрах, описываемые в рамках статистической модели ядра элементарные возбуждения электронов, взаимодействующих с фононами в кристаллич. решётке, и т. д. (см. также Ферми-жидкость).  [c.282]

При большой интенсивности свет нелинейно взаимодействует не только с атомами, ионами и молекулами, но и с конденсированными прозрачными средами — газами, жидкостями, кристаллами и т.д. Эти нелинейные процессы составляют нелинейную оптику [1.28]. Нелинейные процессы, возникающие на атомарном уровне, тесно связаны с нелинейными процессами, возникающими в конденсированных средах. Многофотонные матричные элементы, являющиеся основной характеристикой элементарного акта нелинейного взаимодействия интенсивного света с атомами, определяют такую усредненную характеристику взаимодействия с атомарным газом или конденсированной средой как нелинейная босприилтибость [1.29]. При взаимодействии интенсивного света с газом за счет нелинейной ионизации атомов (или молекул), составляющих газ, он превращается в плазму. Такая, так называемая лазерная плазма может быть образована и при взаимодействии лазерного излучения не только с газом, но и с другими конденсированными прозрачными и непрозрачными средами, в том числе, и с металлами. В одном импульсе мощного лазерного излучения конденсированная среда нагревается, испаряется, пары ионизуются и получается плазма. Это — одно из очень важных применений мощных лазеров [1.30].  [c.25]

Указанный вывод не исключает того, что, помимо деления пятна, могут существовать иные причины беспорядочного перемещения. На снимках зеркальной развертки изображения пятна удается иногда наблюдать неожиданные его смещения, которые не связаны видимым образом с процессом делания. Сформулированный выше вывод следует понимать лишь как утверждение о доминирующей роли деления катодного пятна в его беспорядочном перемещении при данных условиях опыта. Напомним, что описанные исследования относятся к условиям нормальной дуги с однородным ртутным катодом и равновесным давлением ртутного пара около 1,2 мк рт. ст. Не исключено, что при резком изменении условий опыта на первый план выступит какая-либо иная причина движения, такая, как газодинамические эффекты бурного вскипания ртути в области катодного пятна. Относительно подобных условий опыта могут быть сделаны предварительные прогнозы. Как следует из данных последней таблицы, связанное с делением пятна беспорядочное перемещение замедляется с уменьшением тока. Причина этого заключается преимущественно в том, что с уменьшением тока резко уменьшается средний квадрат элементарного смещения пятна при одиночиом акте деления Указанное уменьшение является результатом сокращения продолжительности совместного существования каждой пары пятен и ослабления их взаимодействия. Можно представить, что при достаточно низком значении тока перемещение пятна будет происходить преимущественно за счет газодинамических либо гидродинамических эффектов. В отличив от этого причиной хаотического перемещения пятна на твердом катоде может служить плавление под ним металла. Роль деления пятна как причины его перемещения по катоду должна уменьшаться также при введении в разрядное пространство посторонних газов и повышении плотности газовой среды. Должна существовать некоторая критическая плотность среды, при которой взаимное отталкивание пятен уже не будет иметь места. При таких условиях деление пятна не может оставаться доминирующей причиной его перемещения. Наконец, следует отметить, что действие деления пятна можно частично парализовать при помощи тангенциального к катоду магнитного поля. Последнее ориентирует пятно всегда таким образом, что деление совершается в направлении, нормальном к направлению упорядоченного движения. В этих условиях беспорядочные смещения пятна могут обладать только одной степенью свободы и приобретают своеобразную форму поперечных отклонений пятна от правильной траектории.  [c.297]


РЕЛАКСАЦИЯ — процесс возвращения в состояние термодинамич. равновесия макроскопич. системы, выведенной из такого состояния. Р. — необратимый процесс и по )тому, в силу закона возрастания энтропии, обязательно сопровождается переходом части внутр. энергии системы в тепло, т. н. диссипацией энергии. Как всякое неравновесное явление, Р. не определяется одними только термодинамич. характеристиками системы (напр., давлением, темп-рой и т. д.), а существенно зависит от ее микроскопич. характеристик, в частности от параметров, характеризующих взаимодействия между частицами. В качестве последних обычно рассматривают время свободного пробега частиц т и их длину свободного пробега I. Это — промежуток времени и. расстонние между моментами и местами двух последоват. столкновений молекул газа, между соударениями электрона в металле с другими электронами или с фононами, наконец, между столкновениями любых двух элементарных возбуждений системы между собой.  [c.412]

В гл. III после описания модели свободных электронов Зоммерфельда — Хартри обсуждается аппроксимация Хартри — Фока. Затем дается предварительный и, по существу, исторический обзор работ по изучению взаимодействия в плотном электронном газе. Описаны приближения Вигнера, Бома и Пайнса и Гелл-Манна и Бракнера. Элементарным образом вводятся физически важные понятия экранирования и коллективных колебаний (плазмонов). Далее, несколько формально, даются определения динамического форм-фактора и диэлектрической проницаемости, зависящей от частоты и от волнового вектора. Показывается, как с помощью этих величин можно весьма просто вычислить ряд взаимосвязанных характеристик системы электронов. Сюда относятся, в частности, временная функция корреляции для операторов плотности, сечение рассеяния быстрых заряженных частиц, бинарная функция распределения, а также энергия основного состояния. Упор здесь делается на точное определение отклика системы на продольные поля, изменяющиеся как во времени, так и в пространстве. Затем в приближении хаотических фаз находится выражение для диэлектрической проницаемости системы. В этом же приближении вычисляются и все остальные характеристики, перечисленные выше. Заключительный параграф этой главы посвящен рассмотрению взаимодействия между электронами в простых металлах. Показывается, что аппроксимация хаотических фаз здесь неприменима, после чего дается расчет корреляционной энергии, удельной теплоемкости и спиновой восприимчивости щелочных металлов.  [c.29]


Смотреть страницы где упоминается термин Металлы Взаимодействие с элементарными газам : [c.51]    [c.256]    [c.23]    [c.805]   
Машиностроение Энциклопедический справочник Раздел 3 Том 6 (1948) -- [ c.173 ]



ПОИСК



Взаимодействие металла шва с газами

Газы в металлах



© 2025 Mash-xxl.info Реклама на сайте