Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водяной пар насыщенный - Параметры

XIV. НАСЫЩЕННЫЙ ВОДЯНОЙ ПАР (ПО ДАВЛЕНИЯМ) Параметры даны в единицах системы СИ  [c.326]

Для систем теплоснабжения, отопления, вентиляции и кондиционирования воздуха представляют интерес различные области состояний воды и водяного пара. Относительно низкие параметры характерны для отопления, вентиляции и кондиционирования воздуха вода и насыщенный пар используются здесь как теплоносители в отопительных системах вода имеет температуру 65— 150 °С, насыщенный пар имеет давление 0,1—0,3 МПа. Основной рабочей средой в системах вентиляции и кондиционирования воздуха является влажный воздух, в состав которого входит перегретый или насыщенный водяной пар с температурой менее 100°С. Что касается теплоснабжения и котельных установок, то здесь параметры выще в котлах для централизованного теплоснабжения вырабатывается насыщенный пар с давлением до 4 М.Па, перегретый пар может достигать температуры 250 или 440 °С. Параметры пара перед паровыми турбинами ТЭЦ могут достигнуть 13 МПа и 565 °С и даже быть закритическими 24 МПа и 565 °С (оба параметра выше критических значений). Широко используются насыщенный пар с давлением около 1,4 МПа и вода с температурой 150—180 °С (иод соответствующим давлением для предотвращения вскипания).  [c.121]


Водяной пар в области низких температур — Диаграммы is 12 — 624 Водяной пар насыщенный — Параметры  [c.36]

Ранние исследовательские работы, проводившиеся в связи с применением подогрева питательной воды отработанным паром, не могли опираться на точные сведения о свойствах водяного пара, а также на сколь-нибудь широкий практический опыт применения регенеративных процессов. Скудные сведения о свойствах водяного пара объяснялись низкими параметрами пара (3—5 ата), применяемыми в то время. Отсутствие данных о термодинамических свойствах водяного пара не позволяло исчерпывающе анализировать регенеративный цикл. И. А. Вышнеградский, Цейнер, Ренкин и другие исследователи регенеративных циклов, упрощая задачу и рассматривая идеализированные схемы регенерации, пришли к правильным выводам для этих упрощенных схем. Ими была доказана возможность сохранения основных преимуществ цикла Ренкина — сжатие не в компрессоре, как это необходимо в цикле С. Карно для насыщенного пара, а в насосе. При этом путем введения регенеративного подогрева питательной воды оказалось возможным для идеальных циклов получить такую же величину к. п. д., как и для цикла С. Карно. Этот этап работы, продолжавшийся и в первой четверти XX в., характерен изучением регенеративного цикла с его качественной стороны, путем  [c.44]

Для расчета процессов водяного пара и определения параметров состояния влажного насыщенного пара удобно пользоваться диаграммой Н, 8 (рис.  [c.131]

Принципиальные тепловые схемы АЭС. В общем случае в схеме электростанции используются теплоноситель и рабочее тело. Рабочее тело — газообразное вещество, которое применяют в машинах для преобразования тепловой энергии в механическую. Для АЭС рабочим телом является водяной пар сравнительно низких параметров, насыщенный или слегка перегретый. Теплоноситель — движущаяся жидкая или газообразная среда, используемая для осуществления процесса отвода теплоты, выделяющейся в реакторе. В схемах АЭС теплоносителем является обычная или тяжелая вода, а иногда органические жидкости и инертный газ.  [c.33]

Определение параметров воды и пара. Термодинамические параметры кипящей воды и сухого насыщенного пара берутся из таблиц теплофизических свойств воды и водяного пара. В этих таблицах термодинамические величины со штрихом относятся к воде, нагретой до температуры кипения, а величины с двумя штрихами — к сухому насыщенному пару.  [c.36]


За нулевое состояние, от которого отсчитываются величины s, s", принято состояние воды в тройной точке. Так как состояние кипящей воды и сухого насыщенного пара определяется только одним параметром, то по известному давлению или температуре из таблиц воды и водяного пара берутся значения у, и", /г, h s, s", г  [c.37]

Пример 1-1. Определить параметры влажного насыщенного водяного пара при давлении 20 бар и степени сухости х = 0,9.  [c.188]

Для иллюстрации и сравнения результатов, полученных по двум моделям, на рис. АЛ..АЛ приведены некоторые характеристики двухфазного испаряющегося потока в пористых матрицах в зависимости от его расходного массового паросодержания х. Расчеты выполнены с использованием физических свойств воды и водяного пара в состоянии насыщения при давлении 0,1 МПа. Интеграл 1(х) на рис. 4.4, б рассчитан в соответствии с формулой (4.19) по значениям параметра Ф (л ), приведенным на рис. 4.4, а.  [c.92]

На рис. 6.6, а представлено семейство кривых 1-3 к -1) в зависимости от величины для различных значений параметра 7,. Расчет jV, N" произведен с использованием физических свойств воды и водяного пара в состоянии насыщения при р = 1 бар. Кроме того, принято X = 10 Вт/(м К) 5 = 10 мм i>o = 2 °С. Параметр Bi в этих условиях изменяется за счет изменения расхода охладителя G. Полному испарению этого расхода охладителя и перегреву его внутри пористой стенки до 350 °С соответствует значение внешнего теплового потока <7, указанное на дополнительной оси абсцисс.  [c.138]

Полученное выражение является характеристическим уравнением для определения величины к - I ъ зависимости от параметров у, о, В х, El, I, N, N", N3. Решение его представлено на рис. 1.2,а в виде зависимости к - I 01 В 2 для трех значений параметра у. Расчет У, У произведен с использованием физических свойств воды и водяного пара в состоянии насыщения при атмосферном давлении. Кроме того, принято до = 2 °С 6=10 мм X = 10 Вт/(м К) / =0,052 Ei =0,5. Значениям параметра у = 10 31,6 100 при этих условиях соответствуют величины /1у= 10 , 10 , 10 Вт/(м - К).  [c.163]

Рже. 1.7.2. Зависимость кинетических параметров ДГ (сплошные линии) и Др (штриховые линии), определяюш их кинетику зародышеобразования, от температуры или давления насыщения воды (I) и водяного пара (g)  [c.131]

Определить местный (х = 3 м) коэффициент теплоотдачи к вертикальной стенке от стекающей по ней пленки конденсата водяного пара. Количество образующегося конденсата на единице длины стенки = 1,2 кг/с. Параметры пара /) = 4,24 кПа, = 303 К. Физические свойства пара считать постоянными и определить их по температуре насыщения.  [c.275]

Пусть линия 1-2 на рис. 3-19 есть изотерма. В этом случае /i = 4- Пар с параметрами точки 1 — насыщенный, и в этом состоянии он имеет наибольшее давление и наибольшую плотность в сравнении с перегретым паром (точка 2) той же температуры. Поэтому в насыщенном воздухе парциальное давление пара является максимальным при данной температуре воздуха, и в нем содержится в этих условиях максимально возможное количество водяного пара (на единицу объема).  [c.139]

Пары легкокипящих жидкостей применяются в холодильных установках в состояниях, близких к состоянию жидкости, и поэтому к этим газообразным рабочим телам не могут быть применены законы идеальных газов. Аналитические зависимости между параметрами состояния для них в этом случае так же сложны и неудобны при расчетах, как и для водяного пара, когда он рассматривается как реальный газ поэтому при расчетах с этими телами применяют таблицы и диаграммы. В табл. 4-1 даны краткие сведения о насыщенном паре аммиака.  [c.203]

Таблица П. (. Параметры насыщенного водяного пара по давлениям Таблица П. (. Параметры насыщенного водяного пара по давлениям

В приложениях 9... 12 приведены значения физических параметров воздуха, газообразных продуктов сгорания, водяного пара и воды на линии насыщения.  [c.343]

Приложение И Физические параметры водяного пара на линии насыщения  [c.432]

Если воздух пересыщен влагой (срв> 1), то парциальное давление пара р равно давлению насыщения, и пар в воздухе является влажным. При (рв < 1 водяной пар в воздухе перегрет (р < Ри) при <Ра = 1 водяной пар в воздухе сухой насыщенный (р = рн). Основные параметры влажного воздуха (плотность, газовая постоянная и др.) могут быть  [c.41]

Для производственных помещений нефтебаз и перекачивающих станций применяют централизованные отопительные системы. Теплоносителем является насыщенный водяной пар низких параметров (давление 0,2—0,3 МПа) или вода с температурой 130— 150° С. Расход пара на отопление определяется по формуле (431),  [c.253]

Это не означает, что становятся ненужными мероприятия, направленные на повышение рабочих температур пара. Любой успех здесь крайне важен, однако в современных паровых турбинах достигнуты практически предельные параметры. Использование насыщенного пара с температурой свыше 260 С сопровождается большими трудностями, так как для этого требуется создать слишком высокое давление. Вода — вещество с не самыми лучшими термодинамическими свойствами. Вода имеет низкую критическую температуру (647,4 К), и необходим перегрев, чтобы можно было обеспечить высокие рабочие температуры пара, позволяющие добиться хорошего КПД. Для воды характерно высокое критическое давление (21,83 МПа), поэтому при работе с насыщенным паром необходимо сооружать очень дорогие трубопроводы, а при работе оборудования на перегретом паре система трубопроводов становится более протяженной, хотя массу самих труб можно уменьшить. При температуре конденсации упругость водяного пара очень мала (0,00174 МПа при 16°С), из-за чего необходимо устанавливать на конденсаторах дорогостоящие вакуум-насосы. Наконец, жидкая вода имеет высокую теплоемкость, поэтому требуется затрачивать большое количество дополнительной теплоты при более низких температурах воды, чтобы поднять ее температуру до приемлемого рабочего значения.  [c.227]

Первые экспериментальные исследования свойств водяного пара начались с работ Реньо (1843—1870 гг.). Реньо определил скрытую теплоту испарения и установил в пределах от 32 до 230° С параметры р я t для насыщенного пара.  [c.18]

При расчетах параметры первичного пара определяют по диаграмме i—S для водяного пара, считая, что компрессор засасывает сухой насыщенный пар и процесс сжатия идет по адиабате этими параметрами являются  [c.408]

ФИЗИЧЕСКИЕ ПАРАМЕТРЫ ВОДЯНОГО ПАРА (НА ЛИНИИ НАСЫЩЕНИЯ)  [c.482]

Основные формулы для насыщенного водяного пара. Сухой насыщенный пар. Состояние сухого насыщенного пара определяется одним параметром — его давлением р.  [c.61]

В некоторых частных случаях физические свойства конкретных веществ позволяют построить интерполяционные зависимости, упрощающие определение параметров критического состояния. Например, влажные пары воды и ртути в наиболее существенной для практики области состояний обнаруживают следующие свойства. У насыщенного водяного пара в пределах начальных давлений от 0,07 до 90 бар и значений начальной степени сухости Хд =  [c.98]

Как известно, процесс трансформации воздущных масс, нагретых и увлажненных при контакте с капельным потоком, может быть описан уравнениями притока теплоты и турбулентной диффузии пара. Задача, как правило, решалась методом конечных разностей, графически было получено распределение температур воздуха за пределами брызгального бассейна при заданных начальных и граничных условиях. Область туманообразования можно определить также из анализа уровня температур и влажностей воздуха в области разбрызгивания горячей воды и зависимости плотности насыщенного воздуха от температуры среды [45]. Превыщение влаго-содержания в области разбрызгивания по отношению к влаго-содержанию насыщенного воздуха означает наличие области туманообразования. Если температура и влажность воздуха у разбрызгивающего устройства ниже, чем у насыщенного воздуха при температуре внешней среды, туман образовываться не будет. Границы области распространения тумана определяются интенсивностью перемешивания водяного пара и разностью абсолютных значений параметров воздушного потока в области факела разбрызгивания и в окружающей среде.  [c.122]

Результаты расчета изменения параметров потока при расширении насыщенного водяного пара в сопловой решетке с суживающимися каналами при синусоидальном законе изменения статического давления, обусловленного влиянием источника возмущения на выходе (вращающейся решетки или вращающихся стержней), показаны на рис. 5.24, а. Расчеты подтверждают, что интенсивность возникающих нестационарных ударных волн велика. При движении против потока в зоне уменьшающихся чисел М интенсивность волн постепенно снижается, а скорость движения возрастает. Возникновение нестационарной ударной волны соответствует моменту резкого увеличения давления за срезом сопла. При уменьшении давления на выходе внутри канала распространяется волна разрежения. Затем формируется новая волна сжатия, и процесс повторяется.  [c.188]

Для достижения первого равновесного состояния следует включить нагреватель установки и нагреть водяной пар до 150—180° С. Затем нужно регулировать силу тока нагревателя так, чтобы температура оставалась неизменной. Спустя некоторое время температура по всему объему сосуда выровняется и будет достигнуто равновесное состояние вещества, при котором давление его насыщенного пара будет также неизменным. Записав параметры водяного пара (температуру и давление)  [c.141]


Изменение термического к. п. д. цикла Рен-кина насыщенного пара ч с учетом и без учета работы питательного(и конденсатного) насоса приведено на фиг. 49, из которой видно, что к. п. д. имеет максимум при = = 350° С и = 170 ата в расчете принято, что р 0,04 ата, 1 — 2Ъ,(Ь° С.С повышением начальных параметров отклонение к. п. д. цикла Ренкина насыщенного водяного пара от к. п. д. цикла Карно увеличивается (фиг. 49,  [c.77]

В качестве исходных данных вводятся в табличной форме также значения теплофизических параметров воды и водяного пара удельные объемы кипящей воды i и сухого насыщенного пара v", удельные энтальпия / и теплота парообразования г, абсолютная температура Т и изохорные теплоемкости кипящей воды с и сухого насыщенного пара с , кривая упругости р = / (Г) [49].  [c.127]

Необходимо подчеркнуть, что (8.6) и (8.14), которые описывают интегральные по сечению параметры смеси, не содержат каких-либо допущений относительно термодинамического состояния обеих фаз, кроме допущений о том, что удельный объем воды на линии насыщения определяемый по стандартным таблицам теплотехнических свойств воды и водяного пара [42], в малой степени зависит от температуры и давления жидкой фазы. Вследствие этого метастабильность состояния воды практически не сказывается на точности расчетов. Относительно паровой фазы такого допущения не делается.  [c.170]

В вычислительные машины затруднительно ввести табличные данные параметров воды и пара во всей необходимой для расчета тепловой схемы области. Можно ввести и машину часть табличных данных (узловые точки), определяя промежуточные значения параметров методами линейной или квадратичной интерполяции. Целесообразно вместо таблиц при машинном расчете тепловой схемы пользоваться специальными уравнениями состояния воды и водяного пара, выражающими одни параметры через другие, например энтальпию перегретого пара или сжатой воды в зависимости от давления и температуры или, обратно, температуру в зависимости от энтальпии и давления энтальпию насыщенного сухого пара в зависимости от температуры или давления энтальпию насьаценного влажного пара в зависимости от энтальпии сухого пара и воды и степени сухости пара.  [c.159]

Пользуясь h., < -диа1раммой водяного пара, посчитать КПД цикла Ренкина па насыщенном паре при давлении перед турбиной 9,8 МПа. Сравнить с КПД цикла Карно, имеющего те же параметры, а также цикла Ренкина при перегреве пара до 540 °С. Давление за турбиной Р2 = 4 кПа.  [c.68]

Термодинамические свойства сухого воздуха и водяного пара различны, поэтому Boii xBa влажного воздуха зависят от их количественного соотношения. Физические свойства влажного воздуха характеризуются следуюши ми параметрами парциальным давлением водяного пара влагосодержанием d, абсолютной рп и относительной ф влажностью, степенью насыщения ij . удельной энтальпией г, удельной теплоемкостью с, ]]лотностью  [c.141]

Если провести линии через точки одинаковых характерных состояний (рис. 3-1), то получим три кривые /, // и ///. Линия / соединит все точки, характеризующие состояние воды при 0° С и разных давлениях. Так как мы исходим из предположения, что вода несжимаема, эта линия должна быть параллельна оси ординат. Линия II представляет собой геометрическое место точек, характеризующих воду в состоянии кипения при разных давлениях, а линия III — точек, характеризующих сухой насыщенный пар. Эти две линии соединяются в точке /<. Это значит, что при некотором давлении нет прямолинейного участка перехода воды в пар. Очевидно, что в этой точке кипящая вода и сухой насыщенный пар обладают одними и теми же параметрами состояния. Эта точка называется критической точкой. Все параметры ее называются критическими и имеют для водяного пара следующие значения критическое давление = 221,145 бар критическая температура 4р = 374,116° С критический удельный объем у р = 0,003145 м 1кг, критическая энтальпия /кр = == 2094,8 кдж1кг.  [c.110]

Исходными для определения параметров состояния влажного воздуха по / г-диаграмме (рис. 3-22) служат показания влажного и сухого термометров психрометра. В несколько упрощенном виде принцип действия психрометра можно представить так. У поверхности жидкости, находящейся в чашке, куда опущена ткань, окружающая шарик мокрого термометра психрометра, появляется в процессе испарения воды тонкий слой насыщенного воздуха, образующийся в результате вылета из жидкости молекул ее, преодолевших поверхностное натяжение жидкости. Так как дальнейшее проникновение молекул жидкости из этого слоя в воздух затруднено вследствие столкновения их с молекулами воздуха, концентрация молекул жидкости в тонком слое, прилегающем к поверхности жидкости, велика и с достаточной степенью точности можно считать, что воздух в этом слое насыщен водяным паром. Парциальное давление этого пара есть давление насыщенного пара при температуре поверхностного слоя жидкости, показываемом мокрым термометром (при точных расчетах в это показание вносятся поправки). Сухой же термометр показывает температуру ненасыщенного влажного воздух а в помещении. В подробных курсах технической термодинамики доказывается, что энтальпия насыщенного воздуха над поверхностью жидкости и ненасыщенного воздуха в помещении, где находится психрометр, (почти) одинаковы. Отсюда нахождение в / f-диаграмме точки, характеризующей состояние ненасыщенного воздуха в помещении по показаниям психрометра, сводится к следующему. На линии ср = 100% находят точку соответственно показанию мокрого термометра. Из нее проводят линию 1 = = onst. Очевидно, на этой линии находится точка, характеризующая состояние воздуха в помещении, в котором находится психрометр. Взяв пересечение линии I = onst с изотермой сухого термометра, находят искомую точку. По ее координатам и с помощью линий /d-диаграммы находят все параметры воздуха в помещении (см. пример 3-17).  [c.145]

Г Следующее свойство пластмасс — водопоглощение. Почти все пластмассы в контакте с влажной средой поглощают определенное количество воды, что вызывает набухание и, как следствие, изменение физико-механических свойств и размерных параметров деталей из пластмасс. Качественно и количественно процесс влаго- и водопоглощения пластмасс зависит от многих факторов, основные из которых — постоянные насыщения и диффузии пластмасс размеры, форма детали окружающая среда (вода или водяной пар с определенной концентрацией) температура окружающей среды концентрация воды в пластмассовой детали в начале хранения или эксплуатации в заданных условиях. С физической точки зрения процесс влаговодопоглощения  [c.50]

Пусть начальные параметры дымовых газов, т. е. парогазовой смеси, на входе в экономайзер составляют ti, (точка А на рис. 54). При противотоке горячие газы, поступившие в экономайзер, вступают во взаимодействие с подогретой водой, имеюн1,ей заданнуго конечную температуру 02. Как уже указывалось, у любой водяной поверхности всегда имеется примыкающий к ней слой водяных паров, находящихся с водой в динамическом равновесии. В зависимости от температуры воды и соответственно парциального давления насыщенного пара над водой и парциального давления водяных паров в дымовых газах происходит либо  [c.98]


Второе направление эмпирическое. На основе ряда теоретических положений путем обработки экспериментальных данных получен ряд эмпирических и полуэмпи-рических уравнений, описывающих свойства воды и водяного пара в разных областях состояния с различной степенью точности. Большинство этих уравнений обладает рядом общих недостатков параметры вблизи линии насыщения при больших давлениях, в критической и околокритической области, пригодны для сравнительно узких областей состояния, недостаточно термодинамически согласованы. К ним относятся интерполяционные  [c.12]


Смотреть страницы где упоминается термин Водяной пар насыщенный - Параметры : [c.371]    [c.188]    [c.320]    [c.257]    [c.202]    [c.94]    [c.116]    [c.116]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК



Водяной пар

Водяной пар насыщенный

Насыщение

Насыщения параметр

Насыщенность

Насыщенный пар - Параметры

Пар насыщенный



© 2025 Mash-xxl.info Реклама на сайте