Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водяной пар физические параметры

Так как рабочими телами в модели и в реальном деаэраторе являются вода и водяной пар одинаковых параметров, то этим и обеспечивается одинаковость физических свойств потоков в модели и образце.  [c.73]

С развитием электрификации и химизации в СССР роль теплотехники с каждым годом возрастает. Мощные паротурбинные установки на электростанциях с применением пара высоких параметров, внедрение комбинированных установок с одновременным использованием в качестве рабочих тел как водяного пара, так и продуктов сгорания, теплофикация городов, развитие реактивных двигателей и газотурбинных установок, отвод огромных тепловых потоков в ядерных реакторах для получения электроэнергии, переход к промышленному использованию магнитогидродинамического метода для непосредственного преобразования теплоты в электрическую энергию, широкое использование в народном хозяйстве холода и многие другие проблемы современной науки и техники необычайно расширили область теплотехники и все время ставят перед ней новые исключительно важные физические задачи.  [c.3]


Для иллюстрации и сравнения результатов, полученных по двум моделям, на рис. АЛ..АЛ приведены некоторые характеристики двухфазного испаряющегося потока в пористых матрицах в зависимости от его расходного массового паросодержания х. Расчеты выполнены с использованием физических свойств воды и водяного пара в состоянии насыщения при давлении 0,1 МПа. Интеграл 1(х) на рис. 4.4, б рассчитан в соответствии с формулой (4.19) по значениям параметра Ф (л ), приведенным на рис. 4.4, а.  [c.92]

На рис. 6.6, а представлено семейство кривых 1-3 к -1) в зависимости от величины для различных значений параметра 7,. Расчет jV, N" произведен с использованием физических свойств воды и водяного пара в состоянии насыщения при р = 1 бар. Кроме того, принято X = 10 Вт/(м К) 5 = 10 мм i>o = 2 °С. Параметр Bi в этих условиях изменяется за счет изменения расхода охладителя G. Полному испарению этого расхода охладителя и перегреву его внутри пористой стенки до 350 °С соответствует значение внешнего теплового потока <7, указанное на дополнительной оси абсцисс.  [c.138]

Полученное выражение является характеристическим уравнением для определения величины к - I ъ зависимости от параметров у, о, В х, El, I, N, N", N3. Решение его представлено на рис. 1.2,а в виде зависимости к - I 01 В 2 для трех значений параметра у. Расчет У, У произведен с использованием физических свойств воды и водяного пара в состоянии насыщения при атмосферном давлении. Кроме того, принято до = 2 °С 6=10 мм X = 10 Вт/(м К) / =0,052 Ei =0,5. Значениям параметра у = 10 31,6 100 при этих условиях соответствуют величины /1у= 10 , 10 , 10 Вт/(м - К).  [c.163]

Определить местный (х = 3 м) коэффициент теплоотдачи к вертикальной стенке от стекающей по ней пленки конденсата водяного пара. Количество образующегося конденсата на единице длины стенки = 1,2 кг/с. Параметры пара /) = 4,24 кПа, = 303 К. Физические свойства пара считать постоянными и определить их по температуре насыщения.  [c.275]

Как изменится значение среднего коэффициента теплоотдачи от пленки конденсата, образующейся из неподвижного водяного пара, к плоской стенке, если к движению пленки, стекающей под действием сил тяжести, добавить движение, вызванное скоростью перемещения паровой фазы. Параметры пара р = 47,36 кПа Т = 353 К- Протяженность стенки / = 2 м. Режим течения пленки ламинарный. Физические свойства воды Я = 0,675 Вт/(м - К) и- = = 355-10- Па-с v = 0,415-10- mV г = 2308,2 кДж/ /кг р" = 0,293 кг/м , считать постоянными. Скорость пара Wa = 50 м/с. Количество образующегося конденсата  [c.275]


В приложениях 9... 12 приведены значения физических параметров воздуха, газообразных продуктов сгорания, водяного пара и воды на линии насыщения.  [c.343]

Приложение И Физические параметры водяного пара на линии насыщения  [c.432]

В. Практике расчетов пользоваться приведенными формулами для определения физических параметров водяного пара почти не приходится, так как существуют таблицы этих параметров для кипящей воды, сухого и перегретого пара в зависимости от температуры или давления (некоторые из параметров приведены в приложениях 1 и 2). Пользоваться этими таблицами просто и удобно, так как для любого состояния воды можно быстро и точно определить параметры р, v, Т, i, s.  [c.61]

Появление ГТУ в авиации вызвано особенностями ее современного развития. Успехи авиационных ГТУ способствовали развитию представлений о промышленных ГТУ. Большое развитие получило теоретическое исследование циклов. Этому способствовали физические свойства рабочего тела для газовых турбин, принимаемого за идеальный газ. Широкий диапазон начальных температур, рассмотренных при теоретических исследованиях, создал обнадеживающие перспективы. Исследования паротурбинных циклов производились при органичен-ных знаниях и свойствах рабочего тела — водяного пара. Паротурбинные циклы рассматривались как бы в установившемся, статическом состоянии, ограниченные известным пределом начальных параметров пара.  [c.199]

ФИЗИЧЕСКИЕ ПАРАМЕТРЫ ВОДЯНОГО ПАРА (НА ЛИНИИ НАСЫЩЕНИЯ)  [c.482]

Физические параметры 213 Пар водяной 89  [c.722]

В некоторых частных случаях физические свойства конкретных веществ позволяют построить интерполяционные зависимости, упрощающие определение параметров критического состояния. Например, влажные пары воды и ртути в наиболее существенной для практики области состояний обнаруживают следующие свойства. У насыщенного водяного пара в пределах начальных давлений от 0,07 до 90 бар и значений начальной степени сухости Хд =  [c.98]

Математическая модель рассматриваемой комбинированной энергоустановки состоит из трех частей. Первая из них предназначена для описания процессов, определяющих физические параметры рабочих тел, используемых в установке воды и водяного пара, равновесной низкотемпературной плазмы, кислородно-воздушного окислителя. К расчетным параметрам относятся термодинамические параметры (энтальпия, энтропия, теплоемкость, плотность) и параметры переноса (вязкость, теплопроводность, электропроводность).  [c.107]

Физические параметры рабочих тел. Поскольку не все используемые рабочие тела изучены одинаково, различны и способы определения их физических параметров. Наиболее изученным рабочим телом для паротурбинной части установки является вода (водяной пар). Для нахождения термодинамических параметров воды и водяного пара с высокой точностью оказался целесообразным метод, предусматривающий введение в память ЭЦВМ узловых точек существующих табличных значений свойств воды и водяного пара и интерполяцию для определения свойств рабочего тела между узловыми точками [1, 2]. Основной недостаток этого метода — необходимость использования довольно существенного объема исходной информации по узловым точкам.  [c.108]

Некоторые результаты исследования. С помощью разработанной модели были проведены исследования в различных направлениях. На уровне использования отдельных составляющих модели определялись и анализировались взаимосвязи физических параметров низкотемпературной плазмы продуктов сгорания метана, саратовского газа, керосина, конвертированных водяным паром метана и саратовского газа [90, 120] в гаи-роком диапазоне значений р, Т, q , С , рассчитана и проанализирована большая серия МГД-генераторов [90, 121]. Вопросы, связанные с исследованием термодинамической эффективности комбинированных установок в целом, затронуты в [91—93].  [c.126]

Таблицы физических параметров газов, воды, водяного пара, жидких и твердых тел  [c.19]


Процесс испарения в указанных аппаратах подчиняется закономерностям тепло-массообмена, хорошо изученным в настоящее время в связи с проектированием градирен, распыливающих сушилок, холодильников, оросительно-испарительного охлаждения и других установок, использующих эффект адиабатического испарения воды [1, 2]. Однако эти закономерности кинетики испарения воды применительно к солевым раство-. рам имеют свои особенности по сравнению с испарением чистой воды со свободной поверхности. Так, при кристаллизации в аппаратах с воздушным и вакуум-охлаждением массообмен протекает при непрерывном, изменении теплофизических параметров системы — теплоемкости и вязкости раствора, упругости и энтальпии водяного пара и др. В случае же образования кристаллогидратов в конкурентных точках происходит скачкообразное изменение физических и других свойств выпадающих кристаллов.  [c.341]

Таблицы термодинамических свойств воды я водяного пара, используемые в блоке определения физических параметров,. в полном объеме могут быть размещены во внешних запоминающих устройствах. 1В ОЗУ лишь пересылается тот табличный материал, который необходим для расчета конкретного варианта. Целесообразно также постоянно -хранить в ОЗУ исходные данные, непосредственно необходимые для -расчета переменных величин.  [c.151]

Наивысшие возможные значения начальных параметров пара ограничиваются физическими свойствами водяного пара и качествами металлов, применяемых для котельных и машинных агрегатов, и должны соответствовать тем или другим стандартным  [c.80]

Наивысшие возможные значения начальных параметров пара ограничиваются физическими свойствами водяного пара и качествами металлов, применяемых для котельных и машинных агрегатов и должны соответствовать тем или другим стандартным значениям этих параметров. Поэтому только в отдельных случаях может иметь место для промышленных предприятий вариант  [c.105]

Физические параметры конденсата следует относить к температуре 1=1 —сМ, где с постоянная, равная для водяного пара 0.67.  [c.74]

Для решения актуальных задач численного моделирования процессов переноса оптического излучения в земной атмосфере прежде всего необходимо достоверное знание его энергетического ослабления на различных высотах, обусловленного поглощением и рассеянием излучения водяным паром и другими атмосферными газами. В свою очередь такое поглощение и рассеяние излучения не может быть определено без соответствующей информации о пространственно-временном распределении в атмосфере таких физических параметров, как температура и влажность воздуха, концентрация озона, углекислого газа и малых газовых примесей (СО, СН4, N20, N02 и N0).  [c.161]

Формула (6-5) показывает, что критерий Рг определяется лишь физическими константами] таким образом, он сам представляет собой физическую константу. Теория и подсчеты показывают, что величина Рг для газов почти е зависит от температуры и, кроме того, для газов одинаковой атомности имеет почти одно и то же значение, а именно для одноатомных газов около 0,67, для двухатомных 0,72, для трехатомных 0,80, для четырехатомных 1,0. Для водяного пара при параметрах, достаточно далеких от критических, Рг близок к единице.  [c.236]

Утилизационные установки, использующие ВЭР в виде физической теплоты различных газов, горячей продукции, теплоты охлаждения элементов arpeiaroB и т, п.. как правило, вырабатывают водяной пар различных параметров и сравнительно редко — горячунэ воду или горячий воздух для целей сушки, подогрева сырья.  [c.166]

Термодинамические свойства сухого воздуха и водяного пара различны, поэтому Boii xBa влажного воздуха зависят от их количественного соотношения. Физические свойства влажного воздуха характеризуются следуюши ми параметрами парциальным давлением водяного пара влагосодержанием d, абсолютной рп и относительной ф влажностью, степенью насыщения ij . удельной энтальпией г, удельной теплоемкостью с, ]]лотностью  [c.141]

Наибольшее значение термического КПД цикла может быть получено при максимально высоких температурах подводимой теплоты, что подтверждается проведенным выше анализом зависимости КПД паровых циклов от параметров рабочего агента. Однако для создания реальных циклов и реализации указанных преимуществ требуются особые природные свойства рабочего тела, так как в отличие от цикла Карно в цикле Ренкина качество рабочего тела существенно влияет на термический КПД установки. Наиболее часто в качестве рабочего тела в современных энергетических паровых установках испольаус-ся водяной пар. Однако вода по своим свойствам не может удовлетворять всем требованиям, предъявляемым к рабочим телам о целью увеличения КПД. Прежде всего она имеет низкую критическую темпера-туру (Т р 647.15 К) и при этом достаточно большое критическое давление р р = 22,219 МПа. При таких физических свойствах воды и водяного пара при росте температуры перегрева не удается существенно повысить среднюю температуру подводимой теплоты. Вода имеет слишком большое значение удельной теплоемкости, а это, как  [c.318]

Г Следующее свойство пластмасс — водопоглощение. Почти все пластмассы в контакте с влажной средой поглощают определенное количество воды, что вызывает набухание и, как следствие, изменение физико-механических свойств и размерных параметров деталей из пластмасс. Качественно и количественно процесс влаго- и водопоглощения пластмасс зависит от многих факторов, основные из которых — постоянные насыщения и диффузии пластмасс размеры, форма детали окружающая среда (вода или водяной пар с определенной концентрацией) температура окружающей среды концентрация воды в пластмассовой детали в начале хранения или эксплуатации в заданных условиях. С физической точки зрения процесс влаговодопоглощения  [c.50]


Диаграмма Iq — д,н состояния воздуха. Зависимость между физическими параметрами воздуха (температурой /т, относительной влажностью фн, энтальпией Iq, влагосодерлонпем йн, парциальным давлением ф водяных паров, характеризующими состояние влажного воздуха при постоянном давленпн), графи-  [c.84]

Коэффициент теплоотдачи ио сравнению со значениями, определяемыми при тех же тЭи и Гц формулами (6-6-5) и (6-6-6), увеличен в 1,05—3,52 раза — см. рис. 6-19. Здесь относительные средние коэффициенты теилоотдачи представлены в зависимости от числа Фруда Рг=2р й 2п/ржй/, где w-a — среднеарифметическая скорость пара на рассматриваемом участке I — длина осреднения, отсчитываемая от входной кромки. На рис. 6-19 гхо—коэффициент теплоотдачи, вычисляемый но уравнению соответственно (6-6-5) или (6-6-6). Физические параметры водяного пара выбирались по Г, =372,3 К.  [c.170]

Приведенный на рис. 5.4 алгоритм реализован в виде программ для ЭЦВМ БЭСМ-4 на машинном языке и для БЭСМ-6 на языке АЛГОЛ. При расчете технологической схемы комбинированной установки применяются в качестве вспомогательных программы расчета физических параметров рабочих тел (низкотемпературной плазмы, кислород о-воз-душного окислителя, воды и водяного пара) и отдельных элементов схемы (МГД-генератора, камеры сгорания, сопла, компрессора и системы его охлаждения, регенеративной системы паровой турбины и т. д.). С учетом вспомогательных программ используется (например для БЭСМ-4) 3270 (8) ячеек оперативной памяти. Время счета составляет 15—40 мин в зависимости от исходных данных.  [c.126]

В закритической области вещество находится в однородном состоянии, и в нем отсутствует резкое разделение на отдельные фазы, что имеет место при пересечении пограничной кривой вдали от критической точки. Различие между жидкостью и паром в этой области носит лишь количественный характер, поскольку между ними можно осуществить непрерывный переход без выделения или поглощения скрытой теплоты изменения агрегатного состояния. Однако в указанных переходах непрерывный ряд микроскопических однородных состояний содержит области максимальной микроскопической неоднородности флуктуац ионного характера. Существование такой микроскопической неоднородности связано с падением термодинамической устойчивости первоначальной фазы и с возникновением внутри >нее островков более устойчивой фазы. Указанная внутренняя перестройка вещества, несмотря на свою нелрерывность, имеет узкие участки наибольшего сосредоточения, которые обусловливают появление резких скачков теплоемкости, сжимаемости, коэффициента объемного расширения, вязкости и других свойств вещества. Эти явления демонстрировались рис. 1-5, где был показан характер изменения критерия Прандтля для воды, и перегретого водяного пара от температуры и давления, и рис. 1-6 — для кислорода в зависимости от температуры при закритическом давлении. Из графиков следует, что при около- и закритиче-ских давлениях наряду с областями резкого изменения физических параметров имеются области, где они изменяются с температурой незначительно. При высоких давлениях в области слабой зависимости тепловых параметров от температуры теплоотдача подчиняется обычным критериальным зависимостям. В этом случае при проведении опытов можно не опасаться применения значительных температурных перепадов между стенкой и потоком жидкости, обработка опытных данныл также не  [c.205]

Приведенные выгае материалы наблюдений были положены в основу примерного расчета притока тепла от Солнца для зенитного расстояния Солнца С, = 60° и для обгцего содержания водяного пара в атмосфере = 2 см. Значения всех прочих физических параметров задачи, а также упрогцаюгцие расчет допугцения были указаны выгае.  [c.664]

В учебниках стала более углубленно излагаться теория реальных газов и водяного пара, что привело к развитию в них обнтей теории дифференциальных уравнений термодинамики значительно развилась также в учебниках теория газового и парового потока и общая теория паровых циклов. В результате создания бескомпрес-сорных двигателей внутреннего сгорания п широкого использования их, а также первых попыток создания газовых турбин в учебниках по термодинамике развилась и общая теория газотзфбинных циклов. Применение пара высоких параметров привело к развитию в конце 30-х годов экспериментальной термодинамики, необходимости постановки опытных исследований физических свойств водяного пара и других веществ в широком диапазоне изменений их параметров. При этом вопрос о паровых таблицах п их точности стал важныл вопросом, имевшим исключительное, можно сказать международное, значение.  [c.217]

Задачей конференций являлась координация научно-исследовательских работ в области изучения свойств водяного пара и утверждения опорных точек так называемых скелетных таблиц. Конференции были созваны под влиянием возросших требований к точности паротехнических расчетов, обусловленных развитием паросиловых установок, особенно турбинных. В турбинах стал применяться пар высоких параметров, физические свойства которого были мало изучены.  [c.493]

Чем выше температура перегретого пара и чем ниже его давление, тем меньше отклоняется перегретый пар от свойств идеального газа. При высоких давлениях и при температурах, близких к состоянию насыщения, перегретый пар будет значительно отклоняться от свойств идеального газа. Однако во всех случаях перегретый пар не подчиняется уравнению рь=ЯТ. Для перегретого пара различными исследователями были предложены эмпирические уравнения состояния, позволяющие находить значения его основных параметров и другие физические величины. В настоящее время наиболее распространенным в СССР является уравнение состояния водяного пара, составленное М. П. Вукаловичем и И. И. Новиковым. Это уравнение достаточно сложно, и пользоваться им. для повседневных расчетов по существу невозможно. Поэтому при всех расчетах используются таблицы перегретых паров, в которых приведены значения энтальпии, энтропии и удельного объема, вычисленные при помощи уравнения состояния. Для любого состояния значения этих параметров находятся  [c.109]

На созданной в Физической лаборатории Всесоюзного теплотехнического института (ВТИ) экспериментальной установке были проведены измерения коэффициента динамической вязкости водяного пара при телше-ратурах от 175 до 450° С и давлениях до 350 бар [1]. Эти измерения подтвердили существование аномальной зависимости вязкости водяного пара от давления на изотермах в области, ранее исследованной Кестнным [2], и позволили получить надежные данные в ранее практически не исследованной области параметров состояния. Результаты проведенных опытов показали, что принятая при составлении Международной скелетной таблицы (МСТ) однозначная зависимость избыточной вязкости (fi — Hi) от плотности Н8 соблюдается и что эта таблица нуждается в существенной переработке, поскольку расхождение данных МСТ и опытных достигает 13%, т. е. более чем в 3 раза превышает допуск МСТ. Наши измерения, результаты которых приведены в [1], не охватывали, однако, области параметров состояния, прилегающей к линии насыщения. Следует также отметить, что в МСТ не были зафиксированы значения коэффициента динамической вязкости воды и пара на линии насыщения при температурах выше 300 С, так как данные для этой области были немногочисленными и противоречивыми. В связи с осуществлением Международной программы исследований, направленных наразработку новых скелетных таблиц коэффициентов переноса воды и водяного пара, в Физической лаборатории ВТИ была поставлена работа по подробному исследованию вязкости воды и пара вблизи линии насыщения.  [c.57]



Смотреть страницы где упоминается термин Водяной пар физические параметры : [c.60]    [c.81]    [c.205]    [c.336]    [c.486]    [c.494]    [c.74]    [c.180]   
Справочник для теплотехников электростанций Изд.2 (1949) -- [ c.23 ]



ПОИСК



Водяной пар

Пар Физические параметры

Таблицы физических параметров газов, воды, водяного пара, жидких я твердых тел



© 2025 Mash-xxl.info Реклама на сайте