Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водяной Параметры

Газы водяные — Параметры сжигания 14—154  [c.44]

Определение параметров воды и пара. Термодинамические параметры кипящей воды и сухого насыщенного пара берутся из таблиц теплофизических свойств воды и водяного пара. В этих таблицах термодинамические величины со штрихом относятся к воде, нагретой до температуры кипения, а величины с двумя штрихами — к сухому насыщенному пару.  [c.36]


За нулевое состояние, от которого отсчитываются величины s, s", принято состояние воды в тройной точке. Так как состояние кипящей воды и сухого насыщенного пара определяется только одним параметром, то по известному давлению или температуре из таблиц воды и водяного пара берутся значения у, и", /г, h s, s", г  [c.37]

Пусть пар с начальными параметрами Pi, / вытекает в среду с давлением р2-Если потери энергии на трение при движении водяного пара по каналу и теплоотдача к стенкам сопла пренебрежимо малы, то процесс истечения протекает при постоянной энтропии и изображается на /I, -диаграмме вертикальной прямой 1-2 (рис. 5.5).  [c.50]

Мощности и параметры газотурбинной и паротурбинной установок выбираются таким образом, чтобы количество теплоты, отданной в подогревателе П газами, равнялось количеству теплоты, воспринятой питательной водой. Это определяет соотношение между расходами газа и воды через подогреватель П. Цикл комбинированной установки (рис. 6.16) строится для 1 кг водяного пара и соответствующего количества газа, приходящегося на I кг воды.  [c.68]

Возможность использования современных экономичных крупных паротурбинных установок на сверхкритические параметры водяного пара в случае двухконтурного исполнения и гелиевых турбоустановок в случае одноконтурного исполнения.  [c.4]

Задача IV—9. Найти зависимость показания /г водяного манометра (радиусы ветвей и заданы), присоединенного к замкнутому сосуду, который наполнен газом, находящимся под вакуумом Ра> от следующих параметров  [c.90]

С развитием электрификации и химизации в СССР роль теплотехники с каждым годом возрастает. Мощные паротурбинные установки на электростанциях с применением пара высоких параметров, внедрение комбинированных установок с одновременным использованием в качестве рабочих тел как водяного пара, так и продуктов сгорания, теплофикация городов, развитие реактивных двигателей и газотурбинных установок, отвод огромных тепловых потоков в ядерных реакторах для получения электроэнергии, переход к промышленному использованию магнитогидродинамического метода для непосредственного преобразования теплоты в электрическую энергию, широкое использование в народном хозяйстве холода и многие другие проблемы современной науки и техники необычайно расширили область теплотехники и все время ставят перед ней новые исключительно важные физические задачи.  [c.3]

В технике очень часто приходится иметь дело с газообразными веществами, представляющими механическую смесь отдельных газов, например, доменный и светильный газ, отходящие газы из котельных установок, двигателей внутреннего сгорания, реактивных двигателей и других тепловых установок. Воздух также представляет собой газовую смесь, состоящую из азота, кислорода, углекислого газа, водяных паров и одноатомных газов. Поэтому для решения практических задач необходимо уметь определять основные параметры газовой смеси газовую постоянную, среднюю молекулярную массу, парциальные давления и др.  [c.30]


Пример 1-1. Определить параметры влажного насыщенного водяного пара при давлении 20 бар и степени сухости х = 0,9.  [c.188]

Решение задач, связанных с термодинамическими процессами в области насыш,енных и перегретых паров, можно производить или с помощью таблиц воды и водяного пара, или с помощью -диаграммы. В этих задачах обычно определяются начальные и конечные параметры пара, изменения внутренней энергии, энтальпии и энтропии, степень сухости, работа и количество теплоты, участвующей в процессе.  [c.190]

Пример 14-1. Имеем 1 кг перегретого водяного пара с давлением Pi = 100 бар и /j = 530° С в первом случае при этих параметрах пар поступает в паровую турбину, где адиабатно расширяется до конечного давления рг = 0,05 бар. При этом за счет изменения внешней кинетической энергии пар совершает работу, численно равную изменению энтальпии.  [c.232]

Термический к. п. д. цикла Ренкина увеличивается с возрастанием начальных параметров пара. Если в качестве рабочего тела применяют водяной пар, то повышение начальной температуры ограничено сравнительно малой критической температурой /цр = 374,15° С, но связано с высоким давлением = 221,29 бар. Применение перегретого пара при максимальных значениях температуры 560—600° С и давлениях до 250 бар увеличивает к. п. д. цикла, однако и при этих условиях он значительно ниже к. п. д. цикла Карно.  [c.308]

Для иллюстрации и сравнения результатов, полученных по двум моделям, на рис. АЛ..АЛ приведены некоторые характеристики двухфазного испаряющегося потока в пористых матрицах в зависимости от его расходного массового паросодержания х. Расчеты выполнены с использованием физических свойств воды и водяного пара в состоянии насыщения при давлении 0,1 МПа. Интеграл 1(х) на рис. 4.4, б рассчитан в соответствии с формулой (4.19) по значениям параметра Ф (л ), приведенным на рис. 4.4, а.  [c.92]

На рис. 6.6, а представлено семейство кривых 1-3 к -1) в зависимости от величины для различных значений параметра 7,. Расчет jV, N" произведен с использованием физических свойств воды и водяного пара в состоянии насыщения при р = 1 бар. Кроме того, принято X = 10 Вт/(м К) 5 = 10 мм i>o = 2 °С. Параметр Bi в этих условиях изменяется за счет изменения расхода охладителя G. Полному испарению этого расхода охладителя и перегреву его внутри пористой стенки до 350 °С соответствует значение внешнего теплового потока <7, указанное на дополнительной оси абсцисс.  [c.138]

Полученное выражение является характеристическим уравнением для определения величины к - I ъ зависимости от параметров у, о, В х, El, I, N, N", N3. Решение его представлено на рис. 1.2,а в виде зависимости к - I 01 В 2 для трех значений параметра у. Расчет У, У произведен с использованием физических свойств воды и водяного пара в состоянии насыщения при атмосферном давлении. Кроме того, принято до = 2 °С 6=10 мм X = 10 Вт/(м К) / =0,052 Ei =0,5. Значениям параметра у = 10 31,6 100 при этих условиях соответствуют величины /1у= 10 , 10 , 10 Вт/(м - К).  [c.163]

Рис. 7.3. Зависимость протяженности области испарения к -1 (сплошные линии) и величины Е, (7.20) (штриховые) от температуры вытекающего из твэла перегретого водяного пара при параметрах системы, соответствующих точкам на кривых Рис. 7.3. Зависимость протяженности области испарения к -1 (<a href="/info/232485">сплошные линии</a>) и величины Е, (7.20) (штриховые) от температуры вытекающего из твэла <a href="/info/26572">перегретого водяного</a> пара при <a href="/info/43042">параметрах системы</a>, соответствующих точкам на кривых
Котельные агрегаты сверхвысоких параметров, сконструированные и изготовленные советскими котлостроительными заводами, предназначены для производства водяного пара, имеющего давление р = 25 МПа и температуру t = 550° С.  [c.15]

Критические параметры водяного пара следующие  [c.170]

Водяной пар имеет параметры р = 3 МПа, 1 = 400° С.  [c.180]


Водяной пар имеет параметры  [c.181]

Диаграмма is имеет много ценных свойств она позволяет быстро определять параметры пара с достаточной для технических расчетов. точностью, дает возможность определять энтальпию водяного пара и разности энтальпий в виде отрезков, чрезвычайно наглядно изображает адиабатный процесс, имеющий большое значение при изучении паровых двигателей, и, наконец, позволяет быстро, наглядно и достаточно точно решать различные практические задачи.  [c.187]

При решении задач, связанных с изменением состояния водяного пара, применение графического или аналитического метода в большой мере определяется характером процесса. Однако в редких случаях удается определить все необходимые величины одним из этих способов поэтому чаще всего приходится одновременно пользоваться как графическим, так и аналитическим способами. При этом часть параметров пара и величин, подлежащих определению, находят из диаграммы, а остальные определяют аналитическим путем с применением таблиц водяного пара.  [c.187]

Определить остальные параметры, пользуясь диаграммой, и сравнить их со значениями этих же параметров, вычисленных с помощью таблиц водяного пара и соответствующих формул.  [c.191]

Сопоставим полученные значения со значениями этих же параметров, вычисленных при помощи таблиц водяного  [c.192]

Определить, пользуясь диаграммой 1з, значения параметров 1 ,, з и 0 Д я водяного пара при р = 0,8 МПа и X = 0,96. Сравнить полученные данные со значениями этих величин, полученными при помощи формул и таблиц.  [c.193]

От 1 кг водяного пара с начальными параметрами  [c.200]

XIV. НАСЫЩЕННЫЙ ВОДЯНОЙ ПАР (ПО ДАВЛЕНИЯМ) Параметры даны в единицах системы СИ  [c.326]

XV. ВОДА И ПЕРЕГРЕТЫЙ ВОДЯНОЙ ПАР Параметры даны в единицах систе) СИ (числа слева от ступенчатой линии относятся к воде)  [c.330]

Рассмотрим изменение состояния водяного пара (реального газа), имеющего сравнительно высокую критическую температуру. Изменение параметров состояния водяного пара удобно проследить на р — и-диаграмме (рис. 9.5).  [c.109]

Параметры состояния воды и водяного пара  [c.112]

Найдем, к примеру, равновесную концентрацию водяного пара в атмосферном воздухе с температурой = 25 °С на границе с поверхностью водяной капли, имеющей температуру 18 °С. При этой температуре по таблицам термодинамических параметров воды и  [c.58]

Из формулы видно, что термодинамическая эффективность цикла зависит от начальных параметров водяного пара pi и и конечного давления р . Влияние одного из параметров на КПД цикла можно проследить при неизменных двух других параметрах. Рассмотрим различные пути повышения термического КПД паросиловой установки.  [c.4]

На диаграмму наносят изобары, изохоры и линии постоянной степени сухости, для чего каждую изобару а а" делят на одинаковое число частей и соединяют соответствующие точки линиями x = onst. Область диаграммы, лежащая ниже нулевой изотермы, отвечает различным состояниям смеси пар + лед, h, s-диаграмма водяного пара. Если за независимые параметры, определяющие состояние рабочего тела, принять энтропию S и энтальпию Л, то каждое состояние можно изобразить точкой на Л, 5-диаграмме.  [c.37]

Пользуясь h., < -диа1раммой водяного пара, посчитать КПД цикла Ренкина па насыщенном паре при давлении перед турбиной 9,8 МПа. Сравнить с КПД цикла Карно, имеющего те же параметры, а также цикла Ренкина при перегреве пара до 540 °С. Давление за турбиной Р2 = 4 кПа.  [c.68]

В последние годы были проведены важнейшие теоретические и экспериментальные работы по исследованию свойств воды и водяного пара при высоких параметрах в Московском энергетическом институте проф. М. П. Вукаловичем и чл. корр. АН СССР И. И. Новиковым, акад. В. А. Кириллиным и др.  [c.10]

При использовании таблиц для расчетов процессов водяного пара все необходимые исходные данные, а также параметры пара в конечном состоянии берутся из таблиц с учетом условий протекания процесса (v = onst, р = onst и т. д.). Параметры влажного пара в этом случае вычисляются на основании табличных данных по приведенным в гл. XI формулам.  [c.190]

Тангрен, Додж и Зейферт [781] исследовали газо-водяную смесь с точки зрения возможности использования ее в двигателях подводных аппаратов, в которых газ инжектируется в воду, являющуюся рабочей жидкостью. Предполагалось, что газ и жидкость имеют одинаковую температуру. В исследовании была использована только одна величина, связанная с газовой фазой,— объемная доля газа. При анализе системы, состоящей из воды и газа, отношение объе.мов фаз является более важным параметром, чем отношение расходов масс, которое используется при исследовании смесей газа с частицами. Для учета присутствия газа в воде были внесены изменения в величину у.  [c.329]

При решении целого ряда технических задач рабочими телами могут быть не широко используемые в технике вещества (водяной пар, углекислый газ, азот и некоторые другие), а вещества, термические свойства которых неизвестны. В этом случае можно воспользоваться для предсказания свойств малоизученных веществ положением о термодинамическом подобии веществ. Если значения индивидуальных константа и Ь подставить в уравнение (9.1), то аолучим уравнение Ван-дер-Ваальса в функции приведенных параметров  [c.107]

Процесс дросселирования водяно1о пара в s — (-диаграмме изображен на рис. 13.9. В результате дросселирования его температура понижается, так же как и у всех реальных газов при положительном дроссельном э4 фекте. Поскольку минимальная температура водяного пара на кривой иньерсии равна Т в = 4370 К, то практически при всех значениях исходных параметров пара, используемого в современной теплоэнергетике, возможен только положительный эффект Джоуля — Томсона.  [c.26]


В термодинамических процессах для водяного пара, так же как для идеального газа, необходимо определить неизвестные параметры в начале и конце процесса, изменение его внутренней энергии, работу и теплоту, участвующую в процессе. Для определения неизвестных параметров в практических расчетах пользуются таблицами или диаграммами, причем графический способ ргаиболее распространен. На диаграмме s — г наносят искомый термодинамический процесс для водяного пара, затем определяют по двум известным параметрам остальные неизвестные и по этим данным рассчитывают процесс.  [c.95]


Смотреть страницы где упоминается термин Водяной Параметры : [c.188]    [c.214]    [c.320]    [c.171]    [c.208]    [c.257]    [c.10]    [c.322]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.469 , c.474 ]



ПОИСК



Водяной пар



© 2025 Mash-xxl.info Реклама на сайте