Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система динамических уравнений Эйлера уравнений Пуассона

Эти уравнения называются уравнениями Пуассона. Динамические уравнения Эйлера вместе с уравнениями Пуассона представляют полную систему дифференциальных уравнений движения твердого тела, и задача определения движения твердого тела сводится к интегрированию этой системы дифференциальных уравнений.  [c.402]

В современной литературе по гидродинамике, как было упомянуто в 1 гл. 1 с указанием конкретных ссылок, можно найти большое число разнообразных моделей тепловой конвекции, относящихся к классу конечномерных динамических систем, которыми описываются различные течения неоднородной жидкости, разогреваемой извне. Самую простую нелинейную модель такого рода [94] можно построить с помощью уравнений Эйлера-Пуассона движения тяжелого гироскопа, которые по характеру нелинейности и фундаментальным инвариантам движения (см. 2 гл. 1) являются простейшим конечномерным аналогом уравнений Буссинеска движения идеальной неоднородной жидкости. Модель тепловой конвекции, которая получается из уравнений Эйлера—Пуассона добавлением членов, учитывающих вязкость и внешние источники энергии, используется в этой главе для изучения свойств рэлеевской конвекции [100] и конвективных течений, возникающих под влиянием горизонтально-неоднородного разогрева жидкости, а также в условиях вращения системы в целом [73, 94—97, 102, 195, 196].  [c.134]


Глава VI содержит главные вопросы механики абсолютно твердого тела. Излагается наиболее трудная часть механики абсолютно твердого тела — пространственное вращательное движение тела, одна из точек которого неподвижна в некоторой системе отсчета. Выводятся кинематические и динамические уравнения Эйлера и кинематические уравнения Пуассона. Рассматриваются случаи Эйлера и Лагранжа. Кроме того, кратко изложена магнито-кинематическая аналогия, позволяющая кинематические уравнения представить в виде уравнений Гамильтона.  [c.7]

Обозначим через E Ii, I2) совместные уровни четырех интегралов (2.1) в шестимерном фазовом пространстве уравнений Эйлера-Пуассона. Всюду ниже рассматриваются только такие постоянные интегралов Ii и I2, при которых функции (2.1) независимы на E Ii, I2). В частности, исключаются случаи, когда = I2 = 0. Остальные постоянные образуют множество нулевой меры. Если интегралы (2.1) независимы, то — гладкое двумерное многообразие. На Е естественным образом возникает классическая динамическая система [6] Е, gE, сг), где — сужение на многообразие Е однопараметрической группы сдвигов по траекториям уравнений Эйлера-Пуассона,  [c.152]

Громоздкие условия, приведенные в таблице 3.1, с геометрической точки зрения имеют простой смысл. Воспользовавшись аналогией с уравнением Эйлера-Пуассона, будем считать, что динамически несимметричное твердое тело движется в обобщенно потенциальном поле, т.е. 7 — некоторые позиционные переменные. Тогда условием существования соотношения (1.16) является симметрия потенциала и обобщенного потенциала системы (1.2) относительно вращений вокруг перпендикуляра к круговому сечению гирационного эллипсоида (ср. с 6 гл. 2).  [c.176]

Для того чтобы полностью определить закон движения твердого тела, системы динамических уравнений Эйлера недостаточно. Эту систему следует допо.пнить кинематическими соотношениями ( 6.2). В целом получается система дифференциальных уравнений, исследование свойств решения которой часто сопряжено со значительными трудностями. Ниже будут рассмотрены три случая, когда для этой системы аналитически может быть построено общее решение. Это — случай Эйлера, когда момент внешних сил отсутствует, а также случаи Лагранжа-Пуассона и Ковалевской, когда движение вокруг неподвижной точки происходит под действием параллельного поля силы тяжести.  [c.466]


Уравнения Эйлера (9 1) являются гамильтоновыми (см. 2 гл. 1) симплектическая структура задается скобкой Ли — Пуассона /io i,/2a 2 = а гамильтонианом служит кинетическая энергия тела. Однако скобка вырождена квадрат момента F = коммутирует со всеми функциями на алгебре so(3) (такие функции называются еще функциями Казимира). Как отмечалось в 2 гл. 1, вырождение снимается ограничением динамической системы (9.1) на интегральную поверхность F = onst > 0.  [c.111]


Смотреть страницы где упоминается термин Система динамических уравнений Эйлера уравнений Пуассона : [c.106]    [c.231]   
Теоретическая механика (1981) -- [ c.382 ]



ПОИСК



Пуассон

Пуассона динамический

Пуассона уравнение

Система динамических уравнений Эйлера

Система динамических уравнений уравнений Эйлера

Системы динамические

Уравнение Эйлера

Уравнение динамическое

Уравнения Пуассона си. Пуассона уравнение

Уравнения Эйлера динамические

Уравнения Эйлера—Пуассона

Уравнения динамической системы

Эйлер

Эйлера динамические Эйлера

Эйлера динамические уравнени

Эйлера система динамических уравнени

Эйлера эйлеров

Эйлера—Пуассона



© 2025 Mash-xxl.info Реклама на сайте