Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сверхзвуковое обтекание тела вращения характеристики

Рассмотрим схему обтекания тела вращения (рис. 10.37) сверхзвуковым невязким потоком газа. Перед таким телом возникает головной конический (присоединенный) скачок уплотнения, простирающийся до места его пересечения (точка К) с прямолинейной волной слабых возмущений (характеристикой), выходящей из точки А сопряжения конуса с цилиндром. За точкой К вследствие взаимодействия с другими волнами, выходящими из той же точки А (и ее окрестности), скачок начнет искривляться. Линии возмущений, отразившись от скачка уплотнения, достигают цилиндрической части корпуса. Результатом этого является выравнивание давления на поверхности тела до значения р-о в набегающем потоке.  [c.509]


Рассмотрим задачу об обтекании тела сверхзвуковым потоком газа при наличии сильного вдува на его поверхности. Эта задача возникает, например, при расчете аэродинамических характеристик тела вращения с учетом вдува, возникающего при термохимическом разрушении теплозащитного покрытия. Математически задача об обтекании тела вращения сверхзвуковым потоком газа сводится к решению уравнений физической газовой динамики  [c.366]

Изучение проблемных вопросов сверхзвуковой аэродинамики шло параллельно с разработкой методов, пригодных для практического расчета различных случаев сверхзвуковых течений. Одним из основных рабочих методов был классический метод характеристик. С созданием электронно-вычислительных машин главный его недостаток — трудоемкость вычислений — был снят, что значительно расширило область применения метода. Однако и раньше пытались упростить метод характеристик достаточно простой метод интегрирования уравнения характеристик (характеристики одного из семейств заменялись параболами) разработал А. А. Дородницын (1949), линеаризованный метод характеристик (обобщение метода расчета двумерных течений) предложил А. Ферри (1946). Оба метода использовались в случаях осесимметричного обтекания тел вращения.  [c.328]

Уже для тел вращения в рамках линейной теорий экстремальные задачи существенно усложняются. А. А. Никольский, ([1950] 1957) рассмотрел задачу о теле вращения с протоком, обладающем наименьшим внешним сопротивлением при заданной длине и радиусах входного и выходного сечений. В своей работе он применил новый плодотворный подход к решению вариационных задач сверхзвукового обтекания тел. Вместо отыскания общего выражения, определяющего сопротивление тела по его форме, и его варьирования, Никольский при помощи уравнений количества движения и расхода получил выражение для сопротивления тела и для геометрических величин, характеризующих данные линейные размеры тела, в виде интегралов от значений газодинамических параметров на контрольном контуре, состоящем из головной волны и характеристической поверхности, проходящей через заднюю кромку вперед до пересечения с головной волной. Учитывая наличие соотношений между дифференциалами координат на замыкающей характеристике, получается определенная вариационная задача для нахождения распределения газодинамических параметров на этой характеристике. После решения этой задачи образующая тела находится стандартным приемом по условиям на головной волне и на замыкающей характеристике.  [c.179]


Первые теоретические исследования сверхзвуковых течений газа в СССР были связаны с созданием методов расчета обтекания заостренных впереди профилей и тел вращения с криволинейными образующими в условиях, когда интенсивность возникающих скачков уплотнения яе позволяет пренебречь вихреобразованием в них. Ф. И. Франкль (1935) разработал метод характеристик для плоских установившихся вихре-зых движений газа. Исследование таких течений он производил, используя уравнение для функции тока  [c.155]

Изложенный выше метод характеристик для сверхзвукового осесимметричного обтекания острых тел вращения может быть перенесен на случай несимметричных течений вокруг тела с малым углом атаки, при этом за основное течение берется осесимметричное течение около тела вращения и накладывается на него слабое возмущенное движение газа, соответствующее малому углу атаки. Учитывая для этого дополнительного течения только линейные члены, мы получаем для его определения линейные дифференциальные уравнения.  [c.394]

Появление быстродействующих вычислительных средств вызвало быстрое развитие третьего направления в нелинейной сверхзвуковой аэродинамике разработку алгоритмов получения численных решений типичных задач сверхзвукового обтекания тел и течений внутри каналов с помощью электронных вычислительных машин. Основные усилия и основные достижения в этом направлении связаны с расчетом стационарного обтекания профилей и тел вращения методом. характеристик, с решением двухмерной задачи обтекания тел с отсоединенной головной аволной, с расчетом некоторых неосесимметричных конических течений  [c.167]

Перейдем к выводу уравнений характеристик неизоэнтропи-ческого (вихревого) осесимметричного движения газа. Как уже отмечалось в главе VI, такой случай имеет место при обтекании тел вращения сверхзвуковым однородным потоком, когда впереди тела образуется криволинейная поверхность ударной волны. В этом случае интенсивность ударной волны в различных ее точках неодинакова, и поэтому на линиях тока энтрот  [c.361]

Проблема снижения донного сопротивления движущихся тел актуальна в связи с тем, что его величина для большого класса летательных аппаратов составляет 25-30% общего сопротивления. В последние десятилетия ведется активный поиск способов его уменьшения как за счет совершенствования формы летательных аппаратов, так и за счет организации на различных участках его поверхности процессов, приводящих к изменению условий обтекания и, следовательно, аэродинамических характеристик. Одним из перспективных способов снижения донного сопротивления летательных аппаратов является тепломассопровод вблизи донного среза [1, 2]. В [3-5] изучено влияние тепломассоподвода на донное давление осесимметричных тел за счет вдува продуктов сгорания пиротехнических составов в ближний след. При вдуве продуктов сгорания пиротехнических составов через круглое отверстие в донном торце величина прироста донного давления возрастает с увеличением расхода вдуваемого газа до некоторого максимального значения и падает с уменьшением числа Маха. Экспериментально доказано, что в ближнем следе тела вращения, обтекаемого сверхзвуковым потоком (1.15 < Л/ < 3.0), существуют две области (I и III) (фиг. 1), вдув продуктов сгорания пиротехнических составов в которые более эффективен, чем при использовании традиционных схем снижения донного сопротивления, например вдуве инертных газов или реагирующих продуктов сгорания через отверстия в донном торце. Область I расположена вблизи донного среза, область 11 (фиг. 1) - вверх по потоку от области присоединения оторвавшегося пограничного слоя. Воздействие тепломассоподвода на эти области приблизительно одинаково и приводит к повышению донного давления до значения, близкого к статическому давлению в набегающем потоке. Результаты более ранних исследований по данной проблеме отражены в [6, 7], а также в работах обзорного характера [8,9].  [c.158]



Смотреть страницы где упоминается термин Сверхзвуковое обтекание тела вращения характеристики : [c.176]    [c.430]    [c.392]    [c.471]   
Линейные и нелинейные волны (0) -- [ c.199 , c.200 , c.320 , c.321 ]



ПОИСК



Л <иер сверхзвуковой

Обтекание

Обтекание тел вращения

Обтекание тела вращения

Сверхзвуковое обтекание тела вращения

Тело вращения

Характеристики сверхзвукового

Характеристики тела



© 2025 Mash-xxl.info Реклама на сайте