Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь титан)—вольфрам

Медь (титан) — вольфрам  [c.15]

В обозначении марки первые две цифры указывают среднее содержание углерода в сотых долях процента. Буквы за цифрами обозначают С — кремний, Г — марганец, Н — никель, М — молибден, П — фосфор, X — хром, К — кобальт, Т — титан, Ю — алюминий, Д — медь, В — вольфрам, Ф — ванадий, Р — бор, А — азот, Н — ниобий, Ц — цирконий.  [c.13]

Применение чугуна с шаровидным графитом как износостойкого материала. Расширению областей применения чугуна с шаровидным графитом как износостойкого материала способствует то обстоятельство, что, применяя соответствующую термическую обработку, можно получить наиболее приемлемую структуру чугуна, хорошо работающего на износ. Износостойкость чугуна с шаровидным графитом, кроме того, может быть повышена за счет его легирования такими элементами, как вольфрам, молибден, медь, титан, марганец, никель и др.  [c.168]


При температуре 800° С в статических условиях в литии стойки молибден, вольфрам, ниобий, армко-железо. В загрязненном азотом литии при температуре 550° С не стойки никель и его сплавы, медь, алюминиевые сплавы [1,60]. Удовлетворительной стойкостью в литии обладают тантал, цирконий, титан. Вольфрам ограниченно стоек. Низкую стойкость в литии показали кобальт, ванадий, марганец, бериллий, хром и кремний [1,49]. В качестве защитной атмосферы при испытании образцов в литии могут применяться инертные газы гелий, неон и аргон [1,59]. Радиация на скорость коррозии конструкционных материалов в расплавленных натрии и литии почти не влияет [1,61], [1,62].  [c.51]

Коррозия металлов -тугоплавкие 547 — см. также под их названиями, например Вольфрам Молибден Ниобий Тантал - цветные — см. под их названиями, например Алюминий Магний Медь Титан Цинк - черные — см. Стали Чугун  [c.708]

Металлы — Коррозия — см. Коррозия металлов — тугоплавкие 2.547 — см. также под их названиями, например Вольфрам, Молибден Ниобий Тантал --цветные — см. под их названиями, например Алюминий Магний Медь Титан Цинк — черные — см. Стали Чугун Метод АЕГ, института пластической деформации металлов ГДР, Зибеля 2.43. .. — ветвей и границ 5.62  [c.634]

Коррозионную стойкость циркония в воде и водяном паре резко ухудшают не только азот и углерод, но несколько менее интенсивно титан при содержании более 0,008% и алюминий при содержании более 0,01%. Кислород при содержании, не превышающем 0,5%, мало влияет на коррозионную стойкость циркония в этих средах, а гафний, медь и вольфрам при обычном их содержании не оказывают вредного влияния.  [c.437]

До настоящего времени в простом сосуде удавалось глянцевать или полировать следующие металлы алюминий и его сплавы, сурьму, серебро, висмут, кадмий, хром, кобальт, медь ч ее сплавы, олово, железо, нормальные и специальные стали, германий, бериллий, индий, магний, марганец, молибден, никель и его сплавы, ниобий, золото, свинец, тантал, торий, титан, вольфрам, уран, цинк и цирконий.  [c.251]

В условных обозначениях марок сталей первая цифра означает среднее содержание углерода, выраженное в сотых долях процента, а буквы — содержащиеся в стали легирующие элементы С — кремний, Г — марганец, X — хром, Н — никель, М — молибден, Д — медь, В — вольфрам, Т — титан, Ф —ванадий, К — кобальт, Ю — алюминий, Б — ниобий, Р — бор, П — фосфор, А — азот (в конце букву А для обозначения азота ставить не допускается, так как буква А, поставленная в конце, означает сталь повышенного качества), Л — литейная. Цифры после буквы показывают примерное содержание легирующего компонента (в целых процентах). Если его содержание меньше или около 1%, то цифра отсутствует, если около 1,5%, то ставится цифра 1, если около 2% —цифра 2 и т. д.  [c.50]


Медь. . , Алюминий Вольфрам Молибден Тантал. Ниобий. Титан. . Цирконий Рений. . Золото. Серебро. Платина. Палладий Железо. Никель. Кобальт. Свинец. Олово. . Цинк. . Кадмий. Индий..  [c.281]

Марганец, медь, никель, хром, ванадий, кобальт, алюминий, свинец, титан, вольфрам, цирконий (10- — 10-5) То же 54  [c.17]

Приведенные в табл. 8.6 элементы чугуна, а также весьма часто присутствующие в нем другие элементы (хром, никель, медь, титан, молибден, вольфрам и др.) в сочетании с изменением скорости кристаллизации и охлаждения отливок резко влияют на металлическую основу и форму графита.  [c.141]

Наряду с черными металлами важное значение в технике имеют цветные металлы. Это объясняется рядом важных физико-химических свойств, которыми не обладают черные металлы. Наиболее широко используют в самолетостроении, радиотехнике, электронике и в других отраслях промышленности медь, алюминий, магний, никель, титан, вольфрам, а также бериллий, германий и другие цветные металлы.  [c.3]

Н — никель Г марганец С — кремний Ю — алюминий X — хром М — молибден В — вольфрам Д — медь Т — титан Ф — ванадий  [c.105]

Сталь, в свою очередь, подразделяется на четыре группы обыкновенную, качественную, инструментальную и легированную, в последнюю входит ряд компонентов, которым в обозначении марки стали соответствуют следующие литеры В — вольфрам Г — марганец Д — медь М — молибден Н — никель Р — бор С — кремний Т — титан Ф — ванадий X — хром Ю — алюминий.  [c.286]

Каждый легирующий элемент обозначается буквой Н — никель X — хром К — кобальт М — молибден Г — марганец Д — медь Р — бор Б — ниобий Ц — цирконий С — кремний П — фосфор Ч — редкоземельные металлы В — вольфрам Т — титан А — азот Ф — ванадий Ю — алюминий.  [c.363]

Химические элементы в сталях условно обозначаются следующим образом алюминий (А1) — Ю, азот (А) — А (только в высоколегированных сталях), бор (В) — Р, ванадий (V) — Ф, вольфрам ( ) — В, кремний (51) — С, кобальт (Со) — К, марганец (Мп) — Г, медь (Си) — Д, молибден (Мо) — М, никель (N1) — Н, ниобий (N8) — Б, титан (Т1) — Т, хром (Сг) — X, цирконий (2г) — Ц.  [c.48]

Химические элементы в марках стали обозначают следующими буквами марганец Г кремний С хром X никель Н молибден М вольфрам В ванадий Ф титан Т алюминий Ю медь Д ниобий Б кобальт К бор Р фосфор П цирконий Ц селен Е.  [c.223]

Металлы, применяемые на практике, имеют поликристаллическое строение, поэтому в них обычно существенным является рассеяние, связанное с упругой анизотропией. Это явление заключается в том, что в кристаллах значения модулей упругости (а следовательно, и скоростей звука) зависят от направления относительно осей симметрии кристалла. С точки зрения упругих свойств вольфрам является изотропным материалом для некоторых других металлов анизотропия свойств возрастает в таком порядке магний, алюминий, титан, уран, железо, никель, серебро, медь, цинк.  [c.194]

Рис. 2. Характерные зависимости относительной усадки образцов системы алмаз — медь — серебро — титан (а) и вольфрам — медь (б) от примененного давления с различным содержанием легкоплавкой составляющей и зернистостью твердой фазы Рис. 2. Характерные зависимости относительной усадки образцов системы алмаз — медь — серебро — титан (а) и вольфрам — медь (б) от примененного давления с различным содержанием легкоплавкой составляющей и зернистостью твердой фазы
Сплав основного металла и металлического покрытия происходит на поверхности, подвергаемой диффузии. Размеры обрабатываемого изделия изменяются незначительно. Диффузионные покрытия применяют для многих металлов и сплавов, включая медь, молибден, никель, ниобий, тантал, титан и вольфрам, но особенно часто — для черных металлов.  [c.104]

Легирующие элементы обозначают следующими буквами Н — никель, X — хром, К — кобальт, В — вольфрам, М — молибден, Т — титан, С — кремний, Ф — ванадий, Г — марганец, Д — медь, П — фосфор, Ю — алюминий, Б — ниобий, Р — бор, Н — цирконий, А — азот, Ч — редкоземельные металлы.  [c.143]

Легированные стали согласно ГОСТ обозначаются цифрами и буквами Г (марганец), С (кремний), Н (никель), X (хром), В (вольфрам), М (молибден), Т (титан), Ф (ванадий), КЗ (алюминий), К (кобальт), Д (медь). Буква А в конце марки указывает на высокое качество стали. Цифры впереди букв показывают среднее содержание углерода в сотых долях процента, а цифры, следующие за буквой, указывают примерное содержание легирующего элемента в процентах, если содержание его превышает 1,5%. Напри-  [c.14]


Алюмин пй Вольфрам Железо Золото Кобальт Магний Медь Молибден Никель Ниобий Олово Платина Свинец Серебро Титан Хром Цинк Чугун  [c.189]

П.р имечание. Цифры и буквы в наименованиях марок обозначают двухзначные числа — среднее содержание углерода в сотых долях процента С — кремний, Г — марганец, X — хром, Н — никель, Д — медь. М — молибден, В — вольфрам, Т — титан и Л — литье.  [c.33]

Четкое деление между классами не всегда возможно, однако такая систематизация удобна для обсуждения характеристик композитов. Примеры каждого класса композитов содержатся в табл. 1, а рис. 1 иллюстрирует названные классы соответствующими примерами из работы Петрашека и Уитона [29] по композициям медный сплав — вольфрам. Отметим, что эвтектики включены во второй класс, однако для некоторых эвтектик предельная растворимость каждой из фаз в другой может быть столь низкой, что их предпочтительнее отнести к первому классу. Аналогичным образом система медь (титан)—вольфрам включена в третий класс, поскольку, как показано на рис. 1, на поверхности раздела образуется химическое соединение. Однако при малом содержании титана и медь, и вольфрам образуют с ним твердые растворы.  [c.15]

Травйтель 17 [100 мл уксусной кислоты добавка бензидина]. Этот раствор опробовали Глузанов и Криволави [17]. Он позволяет по окраске определять хром в стальных и чугунных образцах, не оказывая влияния на марганец, никель, кобальт, вольфрам, ванадий, молибден, медь, титан и кремний. При обычной технике получения отпечатков хром придает через 10—30 с отпечатку темноватый голубой оттенок. При этом другие легирующие элементы в стали лишь едва растравливаются.  [c.107]

С помощью спектрального анализа с некоторыми ограничениями в стали и чугуне выявляются марганец, хром, медь, ванадий, вольфрам, кобальт, никель, титан и магний. Однако содержание углерода этим методом можно определить лишь для простых углеродистых сталей. Количественного спектрального анализа углерода, фосфора, серы и кремния в легированных сталях не делают, поэтому, если изменяется лишь процентное содержание этих составляющих, стали рассортировать спектральным методом лельзя.  [c.119]

Из ионитов зарубежных марок наибольшей селективностью к вольфраму обладает анионит Дауэкс-1х8. Этот анионит может быть использован для отделения титана, вольфрама, ниобия, молибдена и тантала от хрома, никеля, кобальта, железа, алюминия, марганца и меди. Из 2,5%-ной HF сорбируются только титан, вольфрам, молибден, ниобий и тантал [192]. Металлы разделяются в результате последовательного элюирования. Сначала 8-н. H I вымывается титан, затем смесью концентрированных HF и H I, взятых в соотношении 1 5, элюируется вольфрам. Для вымывания молибдена -используют смесь тех же кислот, взятых в соотношении 4 5. Ниобий десорбируют смесью 47о HF+15% NH4 I и тантал— смесью 47о NH4p-f 15 /о NH4 I.  [c.196]

Твердые сплавы дают возможность обрабатывать с практически неограниченной скоростью резания медь, латунь, бронзу, однако с ограниченной скоростью железо, никель, хрсм, титан, вольфрам, цирконий и другие тугоплавкие металлы и сплавы. Последнее связано с тем, что сопротивление деформации твердого сплава при температурах, близких к температуре плавления указанных тугоплавких металлов, имеет значение, меньшее, чем эти металлы в зоне стружкообразования.  [c.161]

К высоколегированным сталям относятся стали, содержащие более 10% легирующих элементов. Высоколегированные стали кроме обычных примесей углерода, кремния, марганца, серы и фосфора содержат в различных количествах такие примеси, как хром, никель, титан, вольфрам, молибден, ванадий, ниобий, медь, алюминий и др. Такие стали не могут подвергаться обычной кислородной резке, так как на поверхности их образуется пленка тугоплавких окислов. Такие сталн подвергаются только кислородно-флюсовой резке. Применяются разделительная и поверхностная кислороднофлюсовая резка.  [c.193]

Усиливающие металлические и флуоресцентные экраны. Их применяют для сокращения времени просвечивания. Усиливающее действие металлических экранов основано на освобождении из них вторичных электронов под действием ионизирующего излучения. Освобожденные вторичные электроны действуют на эмульсию пленки и вызывают дополнительную фотохимическую реакцию, усиливающую действие первичного излучения. Для каждого источника ионизирующего излучения материал экрана следует выбирать в зависимости от энергии излучения, в частности для рентгеновского излучения целесообразно использовать медь, титан, олово, свинец, вольфрам, для у-излучения - вольфрам, свинец, медь. Практика показывает, что наибольщ)то эффективность обеспечивают металлические экраны из медной и титановой фольги. В этом случае получается гораздо лучшая контрастность снимков. Толщина фольги должна быть равна максимальной длине пробега вторичных электронов в экране. На практике толщина экрана  [c.263]

Для легированных сталей применяют обозначения Н — никель, Г — марганец, С - кремний, Ю — алюминий, X — хром, М — молибден, В — вольфрам, Д — медь, Т — титан, Ф — ванадий. Буква А в конце обозначения означает высококачественную сталь, Ш — особовысококачественную. Цифра, стоящая справа от буквы, указывает процентное содержание легирующего элемента если содержание этого элемента не превышает 1,5%, цифра в обозначении не указывается.  [c.127]

Все легирующие элементы уменьшают склонность аустенит-ного зерна к росту. Исключение составляют марганец и бор, которые способствуют росту зерна. Остальные элементы, измельчающие зерно, оказывают различное влияние никель, кобальт, кремний, медь (элементы, не образующие карбидов) относительно слабо влияют на рост зерна хром, молибден, вольфрам, ванадир , титан сильно измельчают зерно (элементы перечислены в порядке роста силы их действия). Это различие является прямым следствием различной устойчивости карбидов (и нитридов) этих элементов. Избыточные карбиды, не растворенные в аустените, препятствуют росту аустенитного зерна (см. теорию барьеров, гл. X, п. 2). Поэтому сталь при наличии хотя бы небольшого количества нерастворимых карбидов сохраняет мелкозернистое строение до весьма высоких температур нагрева.  [c.358]


На грифитизацию чугуна существенное влияние оказывает углерод, кремний, никель, алюминий, медь и титан, которые ускоряют процесс графитизации. Такие элементы, как хром, марганец, вольфрам, молибден, сера и кислород, наоборот, затрудняют гра-фитизацию и способствуют получению сорбитообразного перлита.  [c.61]

В марках нержавеющих высоколегированных сталей по ГОСТ 5632—72 химические элементы обозначаются следующими буквами А — азот, В — вольфрам, Д — медь, М — молибден, Р—бор, Т — титан, Ю — алюминий, X—хром, Б — ннобнй, Г — марганец, Е — селен, Н — никель, С — кремний, Ф — ванадий, К — кобальт, Ц — цирконий. Цифры, стоящие в наименовании марки после букв, указывают, так же как и в наименовании марок конструкционных сталей, процентное содержание легирующего элемента в целых едишщах. Содержание элемента, присутствующего в стали в малых количествах, цифрами не обозначается. Цифра перед буквенным обозначением указывает на среднее или при отсутствии нижнего предела на максимальное содержание углерода в стали в сотых долях процента. Наименование марки литейной стали заканчивается буквой Л.  [c.49]

По принятым стандартам различные сплавы имеют условные обозначения, составляемые из букв и чисел. Буквы обозначают наиболее характерные элементы состава сплава, причем буква, входящая в название элемента, не всегда является первой буквой этого названия (например, Б означает ниобий, В — вольфрам, Г — марганец, Д — медь, К — кобальт, Л — бериллий, Н — никель, Т — титан, X — хром, Ю — алюминий и т. п.), число соответствует приблизительному содержанию данного компонента в сплаве (в массовых процентах) дополнительные цифры в начале обозначения определяют повышенное (цифра 0) или пониженное количество сплава. Так, например, обозначение 0Х25Ю5 соответствует сплаву особо высокой жаростойкости с содержанием хрома около 25% и алюминия — около 5% В табл.2.2 и 2.3 приведены свойства некоторых сштавов на основе железа.  [c.37]

Для улучшения свойств (механических, коррозионных, тепловых и др.) сталей применяют легирующие присадки (в скобках указаны буквенные обозначения присадок в марке стали) вольфрам (В), марганец (Г), медь (Д), молибден (М), никель (Н), бор (Р), кремний (С), титан (Т), хром (X), ванадий (Ф), алюминий (Ю). Процентное содержание в стали легирующих присадок указывают цифрами после буквы (например, сталь 12Х2Н4А содержит в среднем 0,12 % углерода, 2 % хрома и 4 % никеля). По способу производства углеродистые стали подразделяют на стали обыкновенного качества и стали качественные конструкционные, а легированные стали — на качественные, высококачественные (в конце обозначения марки стали содержится буква А, например, ЗОХГСА) и особо высококачественные.  [c.272]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

При испытании металлов и сплавов в ртути добавление к ним титана и магния увеличивает коррозионную стойкость первых [1,61], [1,65]. Предполагается, что окислы, образующиеся в результате взаимодействия титана и магния с кислородом, препятствуют взаимодействию металлов с ртутью. При температуре 600° С в ртути, ингибированной титаном и магнием, достаточной стойкостью обладают низкоуглеродистая сталь сталь, легированная 20% молибдена сталь, легированная 8% хрома, 0,5% алюминия и 0,3% молибдена сталь, легированная 5% хрома, 0,5% молибдена и 1,5% кремния а также вольфрам и молибден. При температуре 500°,С можно применять стали легированную 1) 5% хрома 2) 1,5% хрома и 1,3% алюминия 3) 5% хрома, 1,2% меди или 4,5% молибдена ферритные хромистые стали. Нестойки в ртути аустенитные нержавеющиестали, бериллий (при температуре300°С), тантал, ниобий, кремний, титан, ванадий, никель, хром и их сплавы, кобальт, платина, марганец, цирконий, алюминий, золото и серебро. Чтобы ингибировать ртуть, в нее достаточно ввести 10 мг1кг титана. Менее экономически выгодным ингибитором является цирконий [1,65].  [c.53]

Условные обозначения марок проволоки состоят из индекса Св (сварочная) и следующих за ним цифр и букв. Цифры, следующие за индексом Св, указывают среднее содержание углерода в сотых долях процента. Химические элементы, содержащиеся в металле проволок, обозначены следующими буквами А — азот (только в высоколегированных проволоках) Б — ниобий В — вольфрам Г — марганец Д — медь М — молибден Н — никель С — кремний Т — титан Ф — ванадий X — хром Ц — цирконий Ю — алюминий. Цифры, следующие за буквенными обозначениями химических элементов, указывают среднее содержание элемента в процентах. После буквенного обозначения элементов, содержащихся в небольших количествах, цифры не проставляют. Буква А на конце условных обозначений марок низкоуглеродистой и легированной проволоки указывает на повышенную частоту металла по содержанию серы и фосфора. В проволоке марки Св-08АА сдвоенная буква А указывает на более низкое содержание серы и фосфора по сравнению с их содержанием в проволоке марки Св-08А.  [c.325]


Смотреть страницы где упоминается термин Медь титан)—вольфрам : [c.369]    [c.23]    [c.26]    [c.318]    [c.256]    [c.201]    [c.28]    [c.221]    [c.14]   
Поверхности раздела в металлических композитах Том 1 (1978) -- [ c.15 ]



ПОИСК



Вольфрам

Медиана

Медь—вольфрам

Сварка меди с вольфрамом и титаном

Титан

Титан - вольфрам

Титанит

Титания



© 2025 Mash-xxl.info Реклама на сайте