Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рений-цирконий

Следовательно, к тугоплавким должны быть отнесены следующие металлы ванадий (/пл—1900°С), вольфрам (3410°С), гафний (1975°С), молибден (2610°С), ниобии (2415°С), рений (3180°С), тантал (2996°С), технеций (2700°С), титан (1672°С), хром (1875°С), цирконий (1855°С). Все эти элементы расположены в одном месте периодической системы элементов и относятся к металлам переходных групп (см. табл. 2).  [c.521]

Среди жаропрочных и тугоплавких металлов (титан, цирконий, рений, кобальт) весьма распространена также гексагональная решетка (см. рис. 3, а).  [c.18]


Для выплавки тугоплавких металлов (титана, хрома, циркония, ниобия, молибдена, вольфрама и рения) традиционные огнеупорные материалы (динас, магнезит, шамот, хромомагнезит) непригодны, так как они обладают недостаточной огнеупорностью (1300 - 1600°С), а температура плавления титанового сплава составляет более 2000°С. Поэтому все тугоплавкие технически чистые металлы выплавляют в специальных медных водоохлаждаемых тиглях-кристаллизаторах.  [c.302]

Введение в рений 1 % циркония позволяет повысить величину обжатия при холодной прокатке в два раза [1].  [c.144]

IV V VI VII 1 Титан, цирконий, (гафний) Ванадий, ниобий, тантал Молибден, вольфрам (Рений) Тугоплавкие  [c.446]

Следовательно, к тугоплавким металлам должны быть отнесены титан (1672 С), цирконий (1855° С), гафний (1975° С), ванадий (1900° С), ниобий (2415 С), тантал (2996° С),хром (1875° С),молибден (2610°С), вольфрам (3410°С), технеций (2700°С),рений (3180°С).  [c.3]

Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий).  [c.39]

В — от об. до т. кип. в растворах с концентрацией до 90% (платина и ее сплавы с золотом, рением и цирконием).  [c.341]

В — при 350°С в расплавах едкого натра при доступе воздуха (платина и ее сплавы с золотом, рением и цирконием).  [c.341]

В США запатентован резистивный сплав на основе одного из благородных металлов (серебра, циркония, палладия, золота, платины, родия) и двух металлов из следующей группы (вольфрама, молибдена, тантала, рения). Температурный коэффициент сопротивления пленок, нанесенных катодным или ионно-плазменным распылением, составляет 6-10 К >.  [c.444]

Радиационное распухание не является характерной особенностью металлов с определенным типом кристаллической решетки. Поры, вызванные облучением, наблюдаются в ГЦК-(алюминий [67, 104], медь [67, 104], никель [67, 104], платина [105]), ОЦК-(ванадий [67, 106], молибден [3, 62, 67], вольфрам [67, 104 ], ниобий [67, 77, 104], тантал [104, 107], железо [63, 108 ) и ГПУ-(магний [67, 104], рений [63], цирконий [109]) металлах.  [c.143]

Высокие эксплуатационные свойства материалу придают небольшие присадки редких металлов ванадия, циркония, рения и др. Это позволяет хрупкие материалы типа вольфрама превращать в пластичные и использовать их в качестве конструкционных материалов для деталей, ра-  [c.385]


Тугоплавкие металлы относят к переходным элементам IV - VII групп Периодической системы Д.И.Менделеева, у которых при переходе от одного элемента к соседнему происходит достройка внутренних электронных уровней (так называемых d-уровней). Такими металлами являются титан, цирконий, гафний (IV группа), ванадий, ниобий, тантал (V группа), молибден, вольфрам (VI группа) и рений (VII группа). Эта  [c.150]

Ухудшение свойств молибденовых сплавов может быть результатом загрязнения кислородом в процессе изготовления и рекристаллизационной обработки, а также присутствия строчечных включений карбидов по границам зерен, параллельным направлению вытяжки (обработки давлением) [37]. Хрупкость наступает при содержании кислорода всего в 0,0006 % (ат.). Однако в решетке сплава кислород может быть связан углеродом пока соотношение углерода и кислорода превышает 2 1, это вредное влияние кислорода может быть заблокировано [37]. В сплаве TZM присутствуют титан и цирконий, они связывают углерод в карбиды МеС, усложняя ситуацию. Таким образом, к методам пластификации молибденовых сплавов, относятся легирование рением, устранение поверхностных загрязнений, регулировка содержания примесей и удаление карбидов с границ зерен [38].  [c.309]

Появление современных методов выплавки монокристаллов стало возможным в результате разработки эффективных способов удаления бора, углерода и циркония из состава сплавов [4,5]. Производство переплавленных заготовок чистых сплавов требует более точного контроля за содержанием этих элементов, чем в исходных суперсплавах. Дальнейшие этапы разработки монокристаллических сплавов будут включать в себя создание сплавов с рением, обладающих повышенным сопротивлением ползучести [11,12], и сплавов с небольшими добавками гафния и иттрия, обеспечивающих максимальную стойкость этих сплавов к окислению [6]. В этом случае для предотвращения окисления химически активного иттрия (или La, который, опираясь на опыт его успешного применения для увеличения стойкости к окислению деформируемых" сплавов, также может рассматриваться как возможный легирующий элемент) потребуется очень строгое соблюдение как режимов выплавки лигатуры, так и параметров самого процесса точного литья [13].  [c.334]

Ванадий, титан, ниобий, тантал, цирконий, рений и редкоземельные элементы. Влияние этих элементов наиболее полно  [c.81]

Механические свойства тугоплавких металлов зависят от способа производства и содержания примесей. Повышение пластичности вольфрама, молибдена и хрома является актуальной задачей. Добавки титана и циркония, а также редкоземельных металлов используют как основной способ повышения пластичности тугоплавких сплавов. Эти добавки активно соединяются с примесями внедрения и выводят их из твердого раствора. Образовавшиеся частицы соединений вредного влияния на пластичность не оказывают. Рений резко понижает порог хладноломкости Мо и W. Сплавы вольфрама с рением пластичны при 25°С, однако Re — очень дефицитный металл.  [c.505]

Вторая буква для плавильных печей (кроме рудно-термических и ферросплавных) обозначает выплавляемый металл А — алюминий и его сплавы Б — бронза Г — магний Д — молибден, ниобий К — цирконий Л — латунь М — медь и ее сплавы, кроме бронзы и латуни О — олово, свинец, баббит Р — вольфрам, рений С — сталь и сплавы железа Т — титан, титанистые шлаки Ф — флюс X — тантал Ц — цинк Ч — чугун.  [c.136]

В последнее время в сталь вводят редкоземельные элементы, которые ранее совершенно не использовались в стали церий, цирконий, лантан, неодим, рений и др.  [c.104]

Растворение металлических элементов замещения в молибдене или других металлах в общем случае ухудшает пластичность и повышает порог хладноломкости. Небольшие добавки элементов замещения, играя роль рас-кислителей, могут снижать температуры перехода из пластичного состояния в хрупкое. Такими элементами являются, в частности, алюминий, церий, титан, цирконий, добавка которых в количестве 0,1—0,5% снижает температурный порог хрупкости. Значительное легирование примесями замещения всегда повышает порог хладноломкости. Исключение составляет рений (так называемый срениевый эффект ), который снижает порог хладноломкости молибдена, вольфрама и хрома (рис. 392). Чтобы получить ощутимое положительное влияние рения на свойства металла VI группы, необходимо вводить этот элемент в больших количествах (30—50%).  [c.532]


Другим фактором, затрудняющим перемещение дислокаций, является легирование твердых тел примесями. Известно, что малые добавки примесных атомбв улучшают качество технических сплавов. Так, добавки ванадия, циркония, церия улучшают структуру и свойства стали, рений устраняет хрупкость вольфрама и молибдена. Это, как говорят, полезные примеси, но есть примеси п вредные, которые иногда даже в незначительных количествах делают, например, металлические изделия совсем непригодными для эксплуатации. Так, очистка меди от висмута, а титана — от водорода привела к тому, что исчезла хрупкость этих металлов. Олово, цинк, тантал, вольфрам, молибден, цирконий, очищенные от примесей до 10 —10" % их общего содержания, которые до очистки были хрупкими, стали вполне пластичными. Их можно ковать на глубоком холоде, раскатывать в тонкую фольгу при комнатной температуре.  [c.135]

Более того, тугоплавкие металлы, расположенные на границе области тугоплавких в периодической системе элементов, а именно титан, цирконий, гафний, технеций и рений, уже несколько отличаются от пшичных  [c.3]

Особое распространение в современной технике получили металлы середин больших периодов системы Д. И. Менделеева титан, цирконий, ванадий, ниобий, тантал, хром, молибден, вольфрам, рений, не говоря уже о металлах VIII группы железе, кобальте и никеле, значение в технике которых непрерывно возрастает. Сейчас используются и платиновые металлы иридий, родий, палладий и платина (Ки и Оз пока еще применяются мало).  [c.10]

Образует ограниченные твердые растворы с бериллием, бором, углеродом, азотом, кислородом, алюминием, кремнием, фосфором, серой, марганцем, кобальтом, никелем, медью, цин-JJOM, мышьяком, цирконием, ниобием, палладием, серебром, кадмием, оловом, свинцом, сурьмой, гафнием, танталом, золотом, лантаном, церием, висмутом, ураном, рением.  [c.13]

Образует химические соединения с бериллием, бором, углеродом, азотом, кислородом, фтором, алюминием, кремнием, фосфором, серой, хлором, питалом, марганцем, железом, цирконием, ниобием, йодо м, танталом, платиной, рением.  [c.13]

До сих пор в гидрометаллургии редкоземельных элементов и некоторых цветных металлов основным видом оборудования при ионообменных процессах на смолах являются колонны с неподвижным слоем сорбента и пачуки. По данным работы [366], хорошее качество разделения циркония и гафния достигается при использовании ионообменного оборудования колонного типа. Из молибденсодержащих минералов путем выщелачивания с последующей сорбционной обработкой растворов на ионообменных колоннах извлекают технеций и рений. Применяемые в металлургии аппараты типа пачук (диаметр 1000 мм, высота 3000—4000 мм) используют для сорбционного извлечения золота (исходное содержание золота от 3,7 до 4,7 г/т) смолой АП-2 [148]. Успешно эксплуатируемые в гидрометаллургии пачуки больших геометрических размеров в настоящее время подвергают существенной модернизации.  [c.317]

Судя по литературным данным [80], на окисление никелевых и кобальтовых сплавов тугоплавкие элементы оказывают влияние трех видов. Влияние одного из них благотворно, поскольку тугоплавкие элементы можно рассматривать как ловушки (геттеры) для кислорода, способствующие образованию защитных слоев из Al Oj и r Oj. Влияние двух других видов — вредное. Во-первых, тугоплавкие элементы уменьшают диффузионную активность алюминия, хрома и кремния, а это противодействует формированию защитного слоя. Во-вторых, оксиды тугоплавких металлов обычно незащитны (т.е. отличаются низкой температурой плавления, высокой упругостью паров, высоким коэффициентом диффузии и другими неблагоприятными характеристиками), и поэтому они нежелательны в качестве компонентов для наружной окалины. Следовательно, вредное влияние тугоплавких элементов оказывается более весомым, чем их благотворное влияние, так что для повьш1ения противоокислительной стойкости их обычно в суперсплавы не вводят. Но поскольку тугоплавкие элементы не равнозначны, то некоторые из них использовать предпочтительнее, чем другие. Представляется, например, что тантал, не вызывает столь вредных последствий, как вольфрам или молибден, поэтому он один из тех тугоплавких элементов, которые следует предпочесть. Вольфрам, молибден и ванадий ведут себя примерно одинаково, но вольфрам определенно сильнее снижает. скорости обменной диффузии, чем остальные элементы, и, следовательно, более, чем другие способен к неблагоприятному влиянию в отношении избирательного окисления. Оксиды ниобия не являются защитными, поэтому его присутствие в составе окалины нежелательно. Рений применяли в суперсплавах в ограниченных масштабах его влияние, по-видимому, аналогично влиянию ниобия. Гафний и цирконий часто вводят в суперсплавы в небольших количествах, они значительно улучшают прочность связи окалины с основным сплавом.  [c.32]

Значительно снижают скорость разупрочнения при го рячей деформации и последеформационной выдержке кар бидообразующие элементы хром, молибден, вольфрам, ванадий и ниобий, что обусловлено замедлением диффузи онных процессов Микролегирование стали редкоземель ными элементами, а также цирконием и бором, повышает устойчивость созданной при ВТМО субструктуры вслед ствие адсорбции легирующих элементов по границам зе рен и в скоплениях дислокаций (А Г Рахштадт, А Б Су нов)  [c.234]

Легкоплавкие примеси (РЬ, d, Bi, Sb и др), обладающие очень малой растворимостью в жаропрочных спла вах, оказывают резко отрицательное влияние на их жаро прочность (рис 181) даже при небольшом содержании этих элементов Эти примеси концентрируются по границам зе рен, образуют легкоплавкие соединения или эвтектики и способствуют межзеренному разрушению при ползучести Отметим, что вредное влияние этих примесей в сплавах на никелевой основе проявляется при значительно меньшей их концентрации, чем в сплавах на основе железа, причем в последних отрицательное влияние примесей усиливается по мере повышения содержания никеля в сплаве Введение в сплавы малых количеств щелочноземельных (Mg, Са, Ва) и редкоземельных элементов (La, Се), а также циркония и бора оказывает положительное влияние на их жаропроч ность по следующим основным причинам (М В Придан цев) эти элементы очень незначительно растворяются в  [c.301]

Общий недостаток никелевых сплавов — их высокая стоимость, связанная с высокими ценами на их составляющие, в том числе и на никель. В последние годы эти цены были в следующих пределах (тыс. долл./т) никель (электролит.) - 4,5...7,5 никель (карбонильн.) - 14,5...15,0 железо (губка) - 0,7...0,75 железо (карбонильн.) - 10,0...11,0 железо (электролит.) - 6,5...7,0 кобальт — 30,0 хром — 8,0 титан — 2,4...2,5 алюминий - 1,3... 1,7 цирконий - 22,0 гафний - 240 вольфрам - 10,0 молибден — 12,0 ниобий — 20,0 тантал — 400...600 рений — 1300...1450.  [c.306]


Наиболее часто для изготовления термоэлектродов используется графит в паре либо с такими металлами, как вольфрам или рений, либо с графитом, легированным бором. Для окислительных сред тер-мсэлектроды изготовляются из силицидов таких переходных металлов, как молибден, вольфрам, рений. В процессе окислительного нагрева силицидов на поверхности образуется стеклообразная пленка двуокиси кремния, защищающая изделие от дальнейшего окисления и разрушения. Для измерения температур расплавленных сталей и чугу-нов эффективно используются термоэлектроды из боридов циркония и хрома. При измерении температуры среды, в которой возможны выделения углерода и, следовательно, карбндизация элементов термопары, в качестве термоэлектродов используются карбиды титана, циркония, ниобия, тантала, гафния. В окислительных средах они не стойки.  [c.289]

К первой группе относятся Т, с, переходных металлов (титана, циркония, гафния, ванадия, ниобия, тантала, хрома, молибдена, вольфрама, марганца, рения, металлов группы железа, платиноидов, редкоземельных и антиподных металлов) и щелочноземельных металлов. Все они обладают высокой тепло- и электропроводностью, имеют высокую твердость, высокие темп-ры плавления (до 3900°), слабые парамагнитные свойства. Коэфф. термич. расширения этих соединений ниже, чем у соответствующих металлов. Все металло-подобпые Т, с. обладают высокой стойкостью против действия кислот, агрессивных нагретых газов, расплавленных металлов и солей, Металлич. карбиды по мн. своим свойствам подобны металлам они имеют простую кристаллич, решетку, в большинстве случаев построенную по типу твердых растворов внедрения, вследствие  [c.365]

Логарифм модуля сдвига С, характеризующий устойчивость ОЦК структуры, линейно возрастает (см. рис. 23) с увеличением числа d-электронов, занимающих eg ( д уг) состояние от титана, циркония, гафния (d ) к ванадию, ниобию, танталу (d ) и далее к хрому, молибдену, вольфраму ( ), а затем падает при легировании последних технецием и рением, имеющими ПГ структуру. При этом легирование титана хромом, а циркония ниобием ведет к повышению модуля С в соответствии с повышением концентрации dxi/z-электронов, усиливающих ме галлические связи вдоль объемных диагоналей <111> ОЦК решетки.  [c.54]

Тщательное изучение электронных характеристик переходных металлов и их сплавов в связи с разработкой сверхпроводящих материалов выявило, что свойства металлов IV и VI групп не изменяются монотонно, как модуль С, а имеют низкие значения для титана, циркония, гафния, далее проходят через максимум вблизи металлов V группы — ванадия, ниобия и тантала — (4,7—4,8 эл/атом), тогда как электронным концентрациям, лежащим вблизи металлов VI группы — хрома, молибдена, вольфрама и равным 5,7—6,0 эл/атом, вновь отвечает минимум. При переходе к металлам VII—VIII групп наблюдается второй максимум вблизи технеция и рения (6,7—7 эл/атом), а затем новый минимум, приходящийся на рутений и осмий (8 эл/атом).  [c.54]

Скольжение в а-титане, цирконии, гафнии, иттрии, рении и некоторых других металлах с плотной гексагональной структурой происходит также вдоль плотноупакованных рядов <П20>, но по менее плотноупакованным плоскостям призмы 1010 , расстояния между которыми меньше, чем между базисными плоскостями (0001 вследствие того, что с/а 1,633. Главному направлению скольжения <1120> отвечает минимальный вектор Бюргерса Ь= 1/3 <1120),, а следовательно, и минимальное напряжение Пайерлса 0п = = 2rt№ n/ = 2[х/(1—v)-exp (—4rte/6). Кратчайшему расстоянию между атомами в плотноупакованных рядах отвечает максимальное перекрытие s- или d ( 2g)-орбиталей и максимальная энергия межатомных связей, что и является в конечном итоге единственной причиной особой прочности плотноупакованных рядов и их устойчивости при пластической деформации. Консервативными оказываются и плотноупакованные наиболее прочные плоскости базиса,, где каждый атом связан с шестью соседями сильными и короткими металлическими связями (см. рис. 7, 10, 11).  [c.63]

В отличие от этого легирование тугоплавких ОЦК металлов V—VI групп широко используется для твердорастворного упрочнения путем образования твердых растворов замещения между металлами V—VI групп, а также с металлами IV группы (титаном, цирконием, гафнием) и VII—VIII групп (рением).  [c.140]

Возбуждение и спиновое расщепление остовных р -оболочек атомов скандия, титана, циркония, гафния, технеция, рения при их растворении в ОЦК металлах V—V групп ведет к переходу этих металлов в ОЦК состояние ниже температур их полиморфного ПГОЦК (а->-р) превращения. Перекрытию и расщеплению их остовных р -оболочек способствуют большие атомные радиусы этих металлов при замещении атома металла V—VI групп атом титана, циркония, гафния будет зажат соседними атомами растворителя, а следовательно, перейдет в возбужденное состояние. Возбуждение и спиновое расщепление р -бболочек растворенных атомов решетки металла V—VI групп приводит к расширению области ОЦК твердых растворов за счет подавления и выклинивания областей плотных гексагональных а-растворов.  [c.141]

Так, например, введение в молибден или вольфрам 25—30% рения сильно повышает низкотемпературную пластичность и резко понижает температуру перехода в хрупкое состояние. Отметим, однако, что практическому использованию рениевого эффекта препятствует очень высокая стоимость рения и крайне малая его распространенность. Поэтому обычно повышение пластичности металлов V—VI групп достигается тщательной очисткой их от примесей внедрения — кислорода, азота и углерода, малые количества которых способны вызвать сильное охрупчивание этих ОЦК металлов. Достигают повышения пластичности сплавов, связывая примеси внедрения в тугоплавкие соединения. Так, небольшие добавки титана и особенно циркония и гафния связывают растворенный углерод, азот и кислород в очень устойчивые дисперсные соединения, которые при низких температурах могут совершенно изменить механизм деформации и разрушения, переведя сплав в более пластичное состояние.  [c.146]

Вследствие большого различия электроотрицательностей и теп-лот образования диборидов металлов IV и VII групп рений образует квазибинарные разрезы Re—TiBg, Re—ZrBg, Re—HfBg. По нашим прогнозам, должны существовать такие же квазибинарные разрезы в тройных системах технеция с титаном, цирконием, гафнием и бором.  [c.155]

Прочность молибдена при высоких температурах повышается при его легировании небольшими количествами титана, циркония и ниобия (до 1%). Титан и ниобий наиболее сильно упрочняют молибден прп одновременном очень небольшом содержании углерода, что объясняют дисперсионным механизмом упрочнения этпх сплавов. Цирконий повышает жаропрочность молибдена в основном за счет упрочнения твердого раствора. Наибольший интерес представляют сплавы молибдена с 20% рения, обладаюш,ие высоким пределом прочности и длительной прочностью при хорошей пластичности.  [c.475]


Смотреть страницы где упоминается термин Рений-цирконий : [c.146]    [c.373]    [c.301]    [c.33]    [c.433]    [c.95]    [c.728]    [c.122]    [c.108]    [c.120]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Рений-цирконий



ПОИСК



Рений

Реньи

Реньо

Циркон

Цирконий



© 2025 Mash-xxl.info Реклама на сайте