Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Генки-Надаи теория пластичности

Генки интегралы 329 Генки-Надаи теория пластичности 83, 86, 90, 91 Гибкость пластинки 308 Гиперболоид деформаций 44  [c.374]

Развитие теории пластичности привело к возможности создания достаточно простого и естественного обобщения теории идеальной пластичности. До сих пор простейшей теорией пластичности упрочняющегося тела считалась теория Генки-Надаи — теория малых упругопластических деформаций [12]. Но существу, соотношения Генки-Надаи являются вариантом нелинейной теории упругости изотропного тела. Деформационные соотношения теории Генки-Надаи (соотношения теории изотропного упрочнения) при сколь угодно малом упрочнении приводят к уравнениям эллиптического типа, т. е. не сохраняют качественных особенностей идеального пластического течения. Такая потеря качественных особенностей идеального пластического течения представляется искусственной, обусловленной характером исходных предположений. Известно, что слои скольжения наблюдаются и при наличии достаточно малого упрочнения пластических тел. Одну из причин несоответствия предположений теории изотропного пластического течения реальному поведению пластических тел следует искать в допущении об изотропном характере упрочнения. В самом деле, согласно теории изотропного упрочнения, поверхность текучести увеличивается подобно самой себе (рис. 2) следовательно, предел текучести при разгрузке должен увеличиться, и кривая а — е для изотропно упрочняющегося тела должна быть представлена кривой О АВС О (рис. 3). Однако эффект Баушингера, являющийся следствием анизотропного упрочнения пластических тел, указывает, что реальная диаграмма сг — е соответствует кривой О АВЕ Г (рис. 3), т.е. с упрочнением при растяжении происходит понижение предела текучести при сжатии.  [c.166]


Теория пластичности имеет более краткую историю. Первая математическая теория пластичности была создана Сен-Венаном в семидесятые годы XIX в. на основании опытов Треска. В начале XX в. над проблемами пластичности работали Карман, Р. Мизес, Г. Генки, Л. Прандтль. С 30-х годов XX в. теория пластичности привлекла к себе внимание большого круга видных зарубежных ученых (А. Надаи, В. Прагер и др.). Широко известны работы по теории пластичности советских ученых В. В. Соколовского, А. Ю. Ишлинского, Г. А. Смирнова-Аляева, Л. М. Качанова.  [c.7]

Деформационная теория пластичности нашла широкое прв-менение в практических расчетах. Экспериментальные исследования показали, что основные зависимости деформационной теории пластичности Генки—Надаи—Ильюшина справедливы по крайней мере при монотонном возрастании нагрузок и для случая простого нагружения. Однако при сложном нагружении особенно когда на некоторых этапах нагружения происходит разгрузка, применение деформационной теории может привести к погрешностям. Основной недостаток уравнений (1.10)—отрицание роли истории Нагружения, так как уравнения устанавливаются для конечных соотношений.  [c.22]

А. Сен-Венан и М. Леви, сформулировав основы теории идеальной пластичности, не дали решения каких-либо двумерных задач. Затем последовал почти сорокалетний перерыв в разработке этой проблемы- Возникший вновь в начале XX в. интерес к теории пластичности был поддержан тем, что Л. Прандтль и А. Надаи нашли в начале 20-х годов решения нескольких важных задач, а Г. Генки исследовал свойства линий скольжения при плоской деформации. Надаи рассмотрел задачи кручения жестко-пластических и упруго-пластических стержней. Помимо аналитического решения, он воспользовался интересной физической аналогией. Согласно ей, поверхность, описываемая функцией напряжений, аналогична поверхности кучи песка, насыпанной на сечение скручиваемого стержня, причем угол внутреннего трения песка пропорционален напряжению текучести. Если это сочетать с аналогией с мыльной пленкой для функции напряжений при кручении упругого стержня, принадлежащей Прандтлю, то задача об упруго-пластическом кручении иллюстрируется при помощи модели пленки, раздуваемой под крышей , образуемой поверхностью кучи песка.  [c.266]

Уравнения (2.5) представляют основной и наиболее простой вариант так называемой деформационной теории пластичности. Исторически последняя имеет своим началом известные работы Г. Генки и А. Надаи, о которых говорилось в 1. Однако основу этих работ составляли соображения, не позволявшие с полной определенностью судить о сфере применимости теории к реальным металлам. Развитие представлений об основаниях и сфере действия этой теории обязано работам А. А. Ильюшина, опубликованным в сороковых годах и суммированным в монографии (А. А. Ильюшин, 1948)  [c.93]


Теория пластичности Генки - Надаи получается из (1.127), если сохранить коэффициенты А и т. е. вместо скоростей дефор-  [c.83]

Теория пластичности Генки-Надаи 83, 86, 90, 91  [c.376]

В основе этой теории лежат гипотезы, предло5кенные Генки и обобщенные на случай материала с упрочнениел Надаи. Развитие и обоснование теории малых упруго-пластических деформаций связано с работами А. А. Ильюшина. Поэтому часто теорию малых упруго-пластических деформаций называют теорией пластичности Ильюшина.  [c.280]

I- Наиболее простая модель, учитывающая пластические де- формации материала, основана на деформационной теории пластичности Генки—Надаи—Ильюшина [60, 61, 66, 67, 109, 131]. Эта модель предполагает наличие одноаначной аависимости между суммарными деформациями и напряжениями в упруго-пластическом теле. Для изотропного тела основные соотношения деформационной теории имеют внд  [c.20]

Теории деформационного типа. Применение деформационной теории пластичности при рассмотрении частных задачТоказывается значительно проще, чем применение теорий типа течения. Поэтому и в теории ползучести рядом авторов уравнения строились по следующему принципу. Принималось, что тензоры напряжений и деформаций связаны зависимостями деформационной теории Надаи — Генки — Ильюшина  [c.127]

Если имеет место пропорциональное нагружение, т. е. в каждой точке тела параметры состояния возрастают по известному закону прямо пропорционально параметру нагружения, то уравнения (2.1) (при Вц — 0) интегрируются. То же самое справедливо для любого фиксированного пути нагрун ения данной малой частицы в пространстве (о /, Т). В таком направлении подходят к изучению упруго-пластических сред так называемые деформационные теории пластичности (Г. Генки, А. Надаи,  [c.370]

Поставленная выше задача в случае уравнений деформационной теории пластичности Надаи — Генки—Ильюшина была решена Я. Л. Лунцем [69].  [c.156]

Подобная теория для неупрочняющегося материала была предложена Генки и обобщена Надаи на случай материала с упрочнением. Надаи сформулировал основные законы деформационной теории пластичности, а именно  [c.168]

Упомянутые работы Генки, Прандтля и Надаи положили начало интенсивному развитию математической теории идеальной пластичности. Первой попыткой связного ее изложения была книга Г. Межеевского Особенно интенсивно и плодотворно развивалась теория плоской задачи, сводящейся к квазилинейной системе гиперболических уравнений. Важное исследование этой системы выполнил С. А. Христианович 2. Результаты, достигнутые к концу 30-х годов, были освещены в книгах С. Г. Михлина Г. Гей-рингер В. Прагера Затем в 40-е годы большое число решений конкрет- 267 ных задач дали Р. Хилл, В. В. Соколовский, Э. Ли, Ж. Мандель и др.  [c.267]


Смотреть страницы где упоминается термин Генки-Надаи теория пластичности : [c.7]    [c.146]    [c.250]    [c.57]    [c.86]    [c.21]    [c.5]   
Пластичность Ч.1 (1948) -- [ c.83 , c.86 , c.90 , c.91 ]



ПОИСК



Генки

Генки теория пластичности

Надаи

ПЛАСТИЧНОСТЬ Теории пластичности

Теория пластичности



© 2025 Mash-xxl.info Реклама на сайте