Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Большая статистическая сумма квантовая

Большая статистическая сумма квантовая 212  [c.512]

Возникшая у нас ситуация с математической точки зрения полностью аналогична той, с которой мы встретились при подсчете статистической суммы идеального квантового газа (см. гл. 2, I, п. б)) большая статистическая сумма ( подсчитывается проще, чем Е. Имеем  [c.392]

Высокие температуры означают достаточно большие средние энергии частиц. Если при этом частицы имеют большие массы, объем, занимаемый газом, достаточно велик и мала плотность, то создаются условия, при которых движение частиц оказывается близким к классическому. При этом распределение (21.8) фактически совпадает с распределением Максвелла классической статистической физики. (Заметим также, что если все частицы находятся в различных квантовых состояниях, то для учета тождественности частиц достаточно ввести в статистическую сумму (7.22) для идеального газа множитель  [c.153]


Термодинамические соотношения для большого квантового канонического ансамбля можно вывести из равенства (1.3.68). Дифференцируя его по Т, /х и используя явное выражение (1.3.71) для квантовой статистической суммы, получим  [c.63]

Заметим, что не все квантовомеханические величины имеют классический предел или классический аналог (например, спин электрона не имеет такового, и вообще момент количества движения может стать классическим только при больших значениях в). Таким образом, те микроскопические особенности системы, учет которых в принципе не допускает классического варианта описания, в общем классическом пределе должны быть сохранены на квантовом уровне (при этом, естественно, не все суммы перейдут в интефалы). Заметим, наконец, что заблаговременное суммирование по 8г (или по какому-либо другому внутреннему параметру частицы), определяющее фактор 7, можно провести только в том случае, когда выражения, стоящие под знаком статистической суммы, не зависят от з (в частности, если гамильтониан Н р, д) не включает учета взаимодействия магнитных моментов частиц друг с другом и внешним полем, как это, например, имеет место для моделей систем с центральным взаимодействием частиц при отсутствии внешнего магнитного поля). Обычно для простоты в классических задачах мы будем полагать в = О (т.е. 7 = 1).  [c.68]

Статистическая сумма для большого ансамбля Гиббса и квантовая статистика  [c.249]

Таким образом, мы видим, что для идеального квантового газа большая статистическая сумма снова фактлризуется. Однако сомножители соответствуют теперь не отдельным частицам (как в случае больцмановского газа), а индивидуальным энергетическим уровням, поэтому в отличие от первого случая здесь имеется бесконечное число сомножителей.  [c.186]

Ф.— Д. с. для системы взаимодействующих частиц основана на методе Гиббса для квантовых систем. Она может быть реализована, если известны квантовые уровни S, системы и удаётся вычислить статистическую сумму Z, напр, для большого канонического распределения [йббса  [c.284]

Ясно, что при температурах, отличных от О К, вариационный метод Мак-Миллана становится непригодным, так как возникает необходимость учета возбужденных состояний. Используя представление квантовой статистической суммы в виде интеграла Винера. Фосдик [30] разработал для ее расчета формальное построение более общего метода Мопте-Карло, однако изложение этого метода увело бы нас слишком далеко в сторону. Здесь достаточно отметить, что метод представляет большой теоретический и практический интерес, по в настоящее время его использование сопряжено со значительными вычислительными трудностями. Пока самой сложной задачей, для  [c.319]


СТАТИСТИЧЕСКАЯ СУММА — нормирующий множитель, входящий и выражение для статистич. м ,т-рицы каноиич. распределения в квантовом случге. Выражения для С. с. различны для системы с заданным числом частиц (см. Гиббса распределение каноническое) и для системы с иеремеииым числом частиц (см, Гиббса >асп >еделение большое каноническое). В 1-м случае С. с.  [c.72]

Курс охватывает почти все основные разделы классической и квантовой статистической механики и многие ее приложения, например групповые разложения для неидеальных газов, теорию полупроводников, жидкий гелий, кооперативные явления, флуктуации, теорию электролитов, уравнение Больцмана. Четко излагаются основные принципы статистической механики метод ансамбля Гиббса и связь между различными ансамблями, свойства статистических сумм. Приводится большое число задач на примеиепие общих принципов статистической механики, что делается, пожалуй, впервые в учебной литературе. Подбор задач и их решения отличаются оригинальностью и новизной и показывают, что автор сам много и активно работал в различных областях статистической физики.  [c.5]

Со времени зарождения квантовой теории излучения черного тела вопрос о том, насколько хорощо уравнения Планка и Стефана — Больцмана описывают плотность энергии внутри реальных, конечных полостей, имеющих полуотражающие стенки, был предметом неоднократных обсуждений. Больщин-ство из них имели место в первые два десятилетия нащего века, однако вопрос закрыт полностью не был, и в последние годы интерес к этой и некоторым другим родственным проблемам возродился. Среди причин возрождения интереса к этому старейшему предмету современной физики можно назвать развитие квантовой оптики, теории частичной когерентности и ее применение к изучению статистических свойств излучения недостаточное понимание процессов теплообмена излучением между близкорасположенными телами при низких температурах и проблему эталонов далекого инфракрасного излучения, для которого длина волны не может считаться малой, а также ряд теоретических проблем, относящихся к статистической механике конечных систем. Хорошим введением к современному обзору в этой области являются работы [2, 3, 5]. Еще в 1911 г. Вейль показал, что требованием о том, чтобы полость являлась прямоугольным параллелепипедом, можно пренебречь при условии, что (У /с)- оо. Он показал также, что в пределе больших объемов или высоких температур число Джинса справедливо для полости любой формы. Позднее на основании результатов работы Вейля были получены асимптотические приближения, где Do(v) являлся просто первым членом ряда, полная сумма которого 0 ) представляла собой среднюю плотность мод. Современные вычисления величины 0 ) [2, 4] с использованием численных методов суммирования первых 10 стоячих волн в полостях простой формы показали, что прежние асим-  [c.315]

Распределение Бозе — Эйнштейна можно получить и др. методом, если рассматривать статистически равновесное состояние квантового газа как наиболее вероятное состояние и с помощью комбинаторики, учитывая неразличимость частиц, найти тех модинамичо-скую вероятность (статистический еес) такого состояния, т. е, число способов реализации данного состояния газа и заданной энергией S и числом частиц N. Для больших систем, когда N велико, уровни знергии расположены очень плотно и стремятся к непрерывному распределению при стремлении числа частиц и объёма системы к бесконечности. Пусть уровни сгруппированы по малым ячейкам, содержащим С,- уровней в ячейке, число Gf предполагается очень большим. Каждой г-й ячейке соответствует средняя энергия S,- и число частиц N,-. Состояние системы определяется набором чисел Nj, где Л / — сумма п по уровням ячейки. Для Б,— Э. с.  [c.220]

При квантовомеханич. описании макроскопич, систем всякая физич, величипа является оператором или соответствующей ему матрицей. Понятие статп-стич, усреднения заложено уже в самом аппарате квантовой мехапики. Роль ф-ции распределения играет здесь статистический оператор w (наз, также статистической матрицей, или матрицей плотности). Ф-ла для среднего значения к.-н. физич, величины/ принимает вид /= Sp/u , где Sp — сумма диагональных элементов матрицы. Принципиальное отличие квантовой системы, состоящей из большого числа частиц, по аналогии с классич, случаем, состоит в том, что для вычисления / нельзя пользоваться обычной квантовомеханич, ф-лой 7 = ( 1 з (q)f ( ) dg, поскольку определение волновой ф-ции системы г]) иред-  [c.72]


Ансамблевая идеология в статистической механике, предложенная в работах Ч. Дарвина и Р. Фаулера ( h. Darwin, R. Fowler, 1922) еще до появления понятия о микроскопическом состоянии статистической системы как о смешанном состоянии (и даже до появления квантовой механики вообще), представляла собой попытку переосмыслить введенные Гиббсом представления на основе достаточно условной чисто теоретической модели термостата. Именно, вместо одной интересующей нас статистической системы предлагалось рассматривать большое число 9i (в пределе — бесконечно большое) абсолютно точных копий этой системы, образующих вместе огромную адиабатически изолированную равновесную систему, называемую ансамблем систем. Так как каждая из систем этого ансамбля является термодинамической, то постулируется выполнение термодинамического принципа аддитивности по отношению к макроскопическим переменным (т. е., к примеру, внутренняя или свободная энергия системы есть энергия всего ансамбля или, деленная на составляющее его число систем 3i и т. д.) и аддитивность микроскопических переменных, таких, как энергия [c.371]


Смотреть страницы где упоминается термин Большая статистическая сумма квантовая : [c.92]   
Статистическая механика (0) -- [ c.212 ]



ПОИСК



Большая статистическая сумма

Большая статистическая сумма квантовая классическая

Большая сумма

Куб суммы

Статистическая сумма

Статистическая сумма для большого ансамбля Гнббса н квантовая статистика

Статистическая сумма квантовая

Статистические суммы суммы

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте