Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Активная модуляция добротности резонатора

При быстрой активной модуляции добротности резонатора длительность линейного этапа развития генерации определяется временем ее задержки, которая для неодимового стекла равна примерно  [c.229]

Простейший случай синхронизации встречается при 1 = О, т. е. при равенстве фаз всех мод.) В режиме синхронизации мод лазер излучает короткие импульсы в промежутки времени АГ = 2//с (/ — оптическая длина резонатора). Синхронизацию можно осуществить с помощью активной модуляции добротности резонатора, используя электрооптический модулятор с частотой модуляции, равной частотному расстоянию между соседними продольными модами с/2/ возможна также пассивная модуляция с помощью насыщаемого поглотителя. Минимальная достижимая длительность импульса определяется выражением  [c.33]


Причиной является целенаправленное изменение во времени величины вредных потерь (активная модуляция добротности резонатора) либо полезных потерь модуляция нагрузки). Нестационарности генерации может способствовать внесение в резонатор нелинейных элементов, например насыщающегося резонансного поглотителя (просветляющегося фильтра) ).  [c.267]

На рис. 3.2 показан процесс развития гигантского импульса при активной модуляции добротности резонатора кривая Р t) описывает изменение во времени мощности  [c.271]

Активная модуляция добротности резонатора  [c.325]

Режим генерации гигантских импульсов при активной модуляции добротности резонатора  [c.335]

Принцип работы лазера в режиме модуляции добротности состоит в следующем. Допустим, что внутрь оптического резонатора помещен затвор. Если затвор закрыт, то генерация не возникает и, следовательно, инверсия населенности может достигнуть очень высокого значения. При достаточной мощности накачки на метастабиль-ном уровне можно накопить почти все частицы активного вещества. Однако условие генерации выполняться не будет, так как потери резонатора слишком велики. Если быстро открыть затвор, то усиление в лазере будет существенно превышать потери и накопленная энергия выделится в виде короткого интенсивного импульса света. Поскольку в данном случае добротность резонатора изменяется от низких до высоких значений, то такой режим называется режимом модуляции добротности резонатора. При быстром открывании затвора (за время, которое короче времени развития лазерного импульса) выходное излучение состоит из одного гигантского импульса. При медленном же открывании затвора может генерироваться много импульсов.  [c.283]

МВт на 1 см поверхности. Объёмная оптич, прочность лазерных материалов обычно оказывается выше. Модуляция добротности резонатора осуществляется как пассивным образом (насыщающиеся поглотители), так и активным (электро- и акустооптич. модуляторы). Иногда применяют и механич. модуляторы, напр, вращающуюся призму.  [c.49]

Противоположной такому подходу является ситуация, связанная с известной универсальностью, присущей твердотельным лазерам и заключающейся в том, что с помощью одного излучателя вариацией режимов накачки или модуляцией добротности резонатора можно в широких пределах изменять параметры излучения. Этим часто пользуются не только в лабораторных экспериментах, но и в условиях производства. В таком случае следует предусматривать возможность переналадки установки, т. е. смену элементов резонатора, регулирование параметров лазера, учитывающее изменения энергетических процессов в излучателе и термооптические деформации активного элемента.  [c.117]


Теоретические расчеты тепловых полей показали, что можно было ожидать малых термических искажений активного элемента. Это было подтверждено экспериментальными измерениями фокусных расстояний термических линз и расходимости лазерного излучения. Так, в режиме модуляции добротности резонатора оптико-механическим затвором при переходе от одиночных импульсов к режиму следования импульсов с частотой  [c.164]

Для реализации рассматриваемого режима генерации помещают в резонатор лазера модулятор переключатель потерь), управляемый внешним сигналом. Под воздействием сигнала модулятор быстро изменяет уровень вредных потерь в резонаторе (переходит из состояния, соответствующего высоким потерям, в состояние, соответствующее низким потерям, и обратно). Поскольку такие переходы совершаются в результате воздействия извне, данный режим модуляции добротности резонатора называют активной модуляцией. Применяются различные типы модуляторов. Первоначально появились оптико-механические модуляторы, затем стали использоваться электрооптические, а позднее — акустооптические модуляторы [25—28].  [c.271]

Сравнивая режим разгрузки резонатора с режимом активной модуляции добротности, отметим, что в последнем случае плотность фотонов внутри резонатора в исходном состоянии (когда добротность низка) очень мала лазер находится ниже соответствующего высоким потерям порога генерации. При включении добротности начинается развитие генерации — одновременно начинает формироваться выходной импульс. Заметим, что его формирование начинается от спонтанного фона (от уровня шумов), что и приводит к существованию относительно длительного этапа линейного развития (см. рис. 3.2).  [c.280]

В [55] показано, что разгрузка резонатора в непрерывно накачиваемом лазере на гранате с неодимом позволяет получать среднюю выходную мощность, равную максимальной мощности непрерывной генерации при этом удается реализовать частоты следования световых импульсов от 100 кГц до десятков мегагерц (при длительности отдельных импульсов порядка 100 нс) >. Для сравнения укажем, что в режиме активной модуляции добротности при непрерывной накачке максимальная частота следования импульсов составляет приблизительно 50 кГц [59].  [c.281]

В предыдущем параграфе обсуждалось влияние слабой модуляции добротности резонатора на динамику лазера. Теперь перейдем к рассмотрению глубокой модуляции добротности, обеспечивающей переход лазера в режим генерации гигантских импульсов (при импульсной накачке) или в режим генерации регулярной последовательности импульсов (при непрерывной накачке). Рассмотрим три вида активной модуляции добротности оптико-механическую [26, 60], электрооптическую [25—27], акустооптическую [25, 28, 59].  [c.325]

Активная модуляция добротности может быть использована для получения импульсов длительностью несколько микросекунд при частоте повторения в несколько килогерц. Для получения большой инверсии населенности при выключенном оптическом резонаторе используется оптическая накачка. Например, одно из зеркал может вращаться таким образом, что резонатор образуется только когда два зеркала параллельны и имеет место многократное отражение. Это должно происходить при иике инверсии населенности, когда энергия, запасенная в активной среде, быстро разряжается и формируется короткий импульс излучения.  [c.409]

В случае синхронизации мод при непрерывной накачке выходной пучок состоит из непрерывного цуга импульсов, в котором интервал между двумя соседними импульсами равен времени полного прохода резонатора 2L/ (см. рис. 5,46,6). Активная синхронизация осуществляется, как правило, либо модулятором на ячейке Поккельса, либо акустическим модулятором, что более общепринято, поскольку потери, вносимые этим модулятором в резонатор, меньше, Акустооптический модулятор, используемый для синхронизации мод, отличается от того, который применяется при модуляции добротности (см, рис, 5,30), поскольку грань, к которой прикреплен преобразователь, и противоположная грань оптического блока вырезаны параллельно друг другу. Звуковая волна, возбуждаемая преобразователем, теперь отражается назад противоположной гранью блока. Если длина оптического блока равна целому числу полуволн звуковой волны, то возникают звуковые стоячие волны, В этих условиях, если частота звуковой волны равна и, дифракционные потери будут промодулированы с частотой 2(о. Действительно, дифракционные потери достигают максимума в те моменты времени, когда имеет место максимум амплитуды стоячей волны.  [c.321]


Нестационарный режим работы лазера, осуществляемый в отличие от чаще всего нежелательного режима релаксационных колебаний целенаправленно, достигается путем возможно более быстрого изменения добротности резонатора лазера (т. е. потерь) или усиления. Принцип модуляции добротности заключается в следующем. Внутри лазерного резонатора в качестве дополнительного элемента помещается оптический затвор. При закрытом затворе генерация не может начаться, и под действием накачки активной среды возрастает инверсия населенностей, значительно превышая порог генерации лазера без введения дополнительных потерь в резонатор. Если затвор откры-  [c.89]

Режим генерации гигантских импульсов при активной модуляции добротности резонатора. Идея использования модуляции добротности резонатора лазера с импульсной накачкой для получения мощных и коротких световых импульсов была реализована в 1962 г. [22, 23]. Управляя добротностью резонатора, сначала обеспечивают высокий уровень вредных потерь, т. е. специально поднимают порог генерации. Это позволяет создать значительную инверсную заселенность в активной среде. Затем по сигналу извне уровень потерь, а следовательно, и порог генерации быстро понижаются до минимально возможного значения в результате начальная величина инверсной заселенности оказывается существенно вьше нового порога, отвечающего малым потерям. В этих условиях вместо последовательности пичков, высвечивается единичный короткий световой импульс большой мощности (так называемый гигантский импульс).  [c.270]

Для генерации импульсов в непрерывно накачиваемых лазерах первоначально использовалась активная модуляция добротности резонатора. Сначала был применен оптико-механический модулятор в виде вращающегося зеркала [60]. Однако такой метод модуляции оказался малоин-тересньш при непрерывной накачке из-за плохой стабильности амплитуды от импульса к импульсу (что связано с плохой воспроизводимостью положения отражающей плоскости вращающегося зеркала). Широкое признание получили появившиеся позднее акустооптические модуляторы. Они позволили достичь предельно высоких частот следова-ния импульсов / 50 кГц [59].  [c.282]

Режим генерации импульсов в непрерывно накачиваемом одномодовом лазере при активной модуляции добротности резонатора имеет следующие энергетические и временные характеристики частота следования импульсов / л 10 кГц, длительность импульса 100 не — 1 мкс, пиковая мощность Р ах 10 Вт, средняя выходная мощность Р р 1 —10 Вт (заметим Р(,р Рщах /)-Рассматриваемый режим может использоваться и при частотах / < < 10 кГц однако при уменьшении / ниже примерно 5 кГц происходит падение КПД лазера — тем большее, чем меньше I [59, 62]. Как уже отмечалось, частоты / ограничены сверху значением примерно 50 кГц. Наличие верхней частотной границы связано с существованием длительного этапа линейного развития выходного импульса.  [c.282]

Модуляция полезных потерь. С понятием модуляция добротности принято связывать модуляцию вредных потерь. При этом для режима модуляции полезных потерь используется специальный термин — разгрузка резонатора ( avity-dumping) см. 3.1. С более общей точки зрения, согласно которой добротность резонатора определяется как вредными, так и полезными потерями, модуляция полезных потерь может быть отнесена к одному из вариантов активной модуляции добротности резонатора.  [c.335]

Т. л. с успехом работают в режиме модуляции добротности резонатора, что позволяет генерировать гигантские импульсы, длительность и энергия к-рых зависят от скорости включения затвора и свойств активной среды. Обычные значения длительности таких импульсов (1 — 10)10 "с. Их пиковая моншость ограничивается при этом оптнч, прочностью активных и пассивных элементов резонатора, к-рая обычно составляет величину  [c.49]

Модуляция добротности. Путем модуляции добротности резонатора можно получить лазерные импульсы значительно более короткие, чем импульсы накачки. В начале процесса накачки поддерживается малая добротность резонатора. Для этого можно воспользоваться установкой вращающегося зеркала, применением элек-трооптического или магнитооптического затвора, а также введением в среду насыщаемого поглотителя. При малой добротности порог остается достаточно высоким, и до возникновения генерации создается большая инверсия, причем может быть накоплена большая энергия. (Предпосылкой эффективности механизма является относительно большое время жизни активной среды на верхнем лазерном уровне, так как это время жизни определяет интегральное время накопителя.) После начала генерации добротность активно (внешнее влияние затвора) или пассивно (просветление насыщаемого поглотителя под действием лазерного излучения) быстро повышается. Возрастание добротности влечет за собой превышение порога над значением, определяемым условием (В1.11-6), благодаря чему в течение короткого времени происходит нарастание мощности излучения и быстрая отдача накопленной энергии. Таким способом могут быть получены короткие импульсы с)  [c.32]

Третья глава начинается с обзора различных режимов генерации лазера, включая режимы активной и пассивной модуляции добротности резонатора, синхронизации продольных и поперечных мод, модуляции нагрузки. Вводятся, анализируются и широко используются балансные уравнения (уравнения Статца— Де Марса и их модификации). На основе этих уравнений излагаются различные вопросы динамики одномодовых лазеров переходные процессы, приводящие к затухающим пульсациям мощности излучения, появление незатухающих пульсаций мощности при наличии слабой модуляции потерь, генерация гигантских импульсов при мгновенном включении добротности. Сопоставляются электрооптический и акустоопти-ческнй способы активной модуляции добротности. Подробно анализируются процессы в лазерах с просветляющимися фильтрами. Синхронизация продольных мод обсуждается с использованием как спектрального, так и временного подходов. При рассмотрении самосинхронизации мод в лазере с просветляющимся фильтром применяется временное описание на основе флуктуационных представлений. Временной подход используется также для описания акустооптической синхронизации мод в лазере с однородно уширенной линией усиления. Отдельно обсуждаются методы исследования сверхкоротких световых импульсов.  [c.5]


Режим генерации гигантских импульсов при пассивной модуляции добротности резонатора. Пассивная модуляция добротности основана на применении нелинейных элементов, характеристики которых меняются в зависимости от мощности излучения, генерируемого в активном элементе. Широко используются просветляюищеся фильтры — оптические затворы, работающие на основе нелинейно-оптического явления просветления среды >. Наряду с нелинейными фильтрами применяют также нелинейные ячейки на основе вынужденного рассеяния Мандельштама—Брил-люэна, полупроводниковые зеркала с коэффициентом отражения, зависящим от интенсивности падающего светового пучка, и др. [4].  [c.273]

На рис. 3.4 показан процесс развития гигантского импульса при пассивной модуляции добротности резонатора лазера с импульсной накачкой. Модуляция добротности осуществляется за счет применения просветляющегося фильтра. Кривая Р f) на рисунке описывает изменение во времени мощности генерируемого излучения там же показано изменение во времени коэффициента резонансного поглощения фильтра на частоте генерации (кривая (0) и плотности инверсной заселенности уровней активной среды (кривая N (f)). Исходное состояние соответствует непросветленному фильтру (х = XoJ в этом состоянии пороговое значение плотности инверсной заселенности достаточно велико (обозначим через Л пор max)-По мере поступления в активный элемент излучения накачки величина N будет расти. Как только она достигнет значения N ov max. начнется процесс генерации ). Этот момент времени выбран на рисунке в качестве начального момента t = 0). Как и при активной модуляции добротности, процесс формирования гигантского импульса состоит из двух этапов длительного этапа ждленного (линейного) развития (длительность этапа io) и короткого этапа быстрого (нелинейного) развития (длительность этапа При пассивной модуляции добротности этап линейного развития примерно на порядок длительнее, чем при активной модуляции он составляет теперь примерно 1 мкс. Это объясняется тем.  [c.274]

Периодическая модуляция добротности при равномерном движении отражающей плоскости. Примечательно, что эффект периодической модуляции добротности резонатора возникает, в частности, при равномерном движении вдоль оптической оси каких-либо отражающих плоскостей, например, плоскости выходного зеркала или торцеюй плоскости активного элемента [9, 10]. Этот эффект нетрудно объяснить, обратившись к продольному эффекту Допплера.  [c.322]

Выше отмечалось, что при пассивной модуляции длительность этапа линейного развития генерации оказывается примерно на порядок больше, чем при активной модуляции. Это связано с тем, что при активной модуляции добротности процесс генерации на линейном этапе развивается фактически в условиях низких потерь в резонаторе (в случае быстрого включения добротности), тогда как при пассивной модуляции процесс генерации на линейном этапе развивается в условиях вьюоких ттерь. Указанное различие двух рассматриваемых режимов генерации гигантских импульсов хорошо видно на рис. 3.46, где сопоставляются зависимости М () и Л ор (О Для каждого режима (а — режим активной модуляции при быстром включении добротности, б — режим пассивной модуляции). Физически ясно, что быстрое уменьшение потерь при активной модуляции добротности облегчает (ускоряет) развитие генерации, что и проявляется в сокращении (по сравнению со случаем пассивной модуляции) длительности линейного этапа.  [c.373]

Пассивная модуляция добротности позволяет гюлучить гораздо более короткие импульсы, чем активная модуляция добротности, обычно длительностью около 100 не, обеспечивая при это.м частоту повторения импульсов примерно 1 МГц. Здесь во время накачки выходное зеркало делается гюлностью отражающим, в результате чего энергия накачки запасается в резонаторе в виде излучения. Когда этот процесс достигает максимума, прозрачность выходного зеркала повышается от нуля до максимально возможного значения (в идеале до 100 %). После этого, в течение времени пролета нескольких фотонов, (т л - 2//С, где I — оптическая длина резонатора) излучение испускается в виде одиночного импульса. При этом вся запасенная в резонаторе энергия излучения выводится из него.  [c.409]

Затворы. Лазер с модуляцией добротности резонатора ботает следующим образом. В процессе накачки лам-й активного элемента включается АОМ, который бла-даря дифракции света вносит в резонатор потери, еспечивая такую низкую добротность, при которой не [полняются условия генерации. Когда энергия, западная активным элементом, достигает необходимого овня, АОМ выключается и происходит генерация одного и короткого импульса излучения. Первоначаль-модуляция добротности осуществлялась механиче-  [c.47]

Рнс. в.2. Принципы]геиерации световых импульсов а — амплитудная модуля-цня в пассивной системе б — модуляция добротности лазерного резонатора в — синхронизация продольных мод в активном резонаторе г — фокусировка во времени, быстрая фазовая модуляция и компрессия  [c.12]

Помеш,ение в резонатор частотного фильтра может радикально изменить ситуацию [6]. Авторы исследовали генерационные характеристики импульсного лазера на фосфатном стекле с активной синхронизацией мод и модуляцией добротности. В качестве фильтра использовался эталон Фабри — Перо толш,иной 0,25 мм с шириной полосы пропускания 15 см . Благодаря фазовой самомодуляции и ограничению полосы усиления длительность импульсов в цуге монотонно уменьшалась от 40 до 4 пс. Наивысшее спектральное качество достигалось в конце цуга.  [c.244]

Усилитель. Проблемы разработки и расчета характеристик усилителя в лазерной системе, в том числе и на основе газов, возникают прежде всего тогда, когда от этой системы необходимо получить более короткие и более интенсивные импульсы излучения, чем при использовании одного генератора с применением техники модуляции добротности и сихронизации мод. Кроме этого усилитель широко используется в лазерных системах с частотной селекцией и селекцией пространственного распределения поля излучения. В таких системах исходное излучение формируется задаюш,им генератором небольшой мош,ности, в кототом разработанными методами селекции частоты и пространственного распределения сравнительно легко добиваются заданных характеристик излучения. Роль усилителя в такой системе сводится к усилению полученного от задаюш,его генератора излучения до нужного уровня мош,ности, причем искажения, вносимые усилителем во все характеристики исходного сигнала, не должны превышать пределов точности их экспериментальных определений. В этом разделе мы остановимся на анализе и расчете характеристик молекулярных газовых усилителей (МГУ) излучения СОа-лазера. Это опять же связано с широким кругом прикладных задач, в которых используют такие системы, начиная от лазерного термоядерного синтеза и прикладной нелинейной оптики в ИК-Диапазоне и кончая современной технологией. Сразу отметим, что весь алгоритм этого анализа и расчета может быть использован при разработке усилителя на любых газах с возбуждением его активной смеси электрическим разрядом. Обш,ей схемой анализа МГУ можно считатьструктурнуюсхему для лазеров (см, рис. 2.3). Для задач усилителя в ней исключается из описания Резонатор и вместо уравнения, описываюш,его режим генерации, в блоке Mil в полуклассическую модель вместо (2.21, г) и в балансную модель вместо (2.22, в) вводятся уравнения, описываюш,ие прохождение излучения в среде усилителя, а именно  [c.77]


Система уравнений (4.2)—(4.6) может быть использована для анализа многомодового режима как при пассивной модуляции добротности, так и при свободной генерации. Для этого следует лишь отбросить уравнение (4.5) и последний член в уравнении (4.6). Ниже будут изложены результаты численного исследования системы уравнений, аналогичной системе (4.4)—(4.6), но несколько упрощенной вследствие использования предположения о том, что внутри резонатора могут существовать только продольные моды (поперечный индекс опущен) и неоднородность продольного распределения плотности мод в резонаторе не учитывается ( F и приняты равными единице). Поскольку контур линий усиления в активной среде чаще всего может быть аппроксимирован лорен-цовской (однородное уширение — рубин, гранат и другие кристаллы) или гауссовской (стекла) зависимостью, имеющей максимум в центре линии усиления, а спектральные кривые поглощения фототропных веществ — некоторой линейной зависимостью с углом наклона, различающимся для разных красителей и рас-  [c.180]

Третий и четвертый члены в правой части уравнения (4.144) описывают изменение инверсии рабочих уровней под действием накачки и спонтанных переходов. Если длительность генерируемых импульсов настолько мала, что за время, равное их длительности, изменение инверсии под действием накачки и за счет спонтанных переходов невелико, то третьим и четвертым членами в уравнении (4.144) можно пренебречь. Это, как правило, справедливо для режима модулированной добротности. В случае модуляции добротности (исключая пассивные методы с использованием фото-тропных веществ) изменение добротности соответствует изменению во времени коэффициента полных потерь к от пот (О-Необходимо отметить, что V в уравнении переноса (4.146) — так называемая эффективная скорость фотонов в резонаторе с активным и фототропным элементами. Она позволяет избежать математических трудностей, связанных с тем, что активная и фото-тропная среды находятся в различных областях пространства и учитывает реальное замедление фотонов в активной среде (скорость распространения v — с/п) и в фототропной (скорость распространения Кф =с1пф). Для случая, когда используется полностью система уравнений (4.144) — (4.146), т. е. при введении фототропного затвора в резонатор, формула для эффективной скорости движения фотонов в резонаторе может быть записана в виде  [c.222]

Осуществить это легко с помощью выражения (i2.34), KOToipoe юпределяет пороговое значение энергии накачки импульсного лазера СО свободной генерацией. Применимость этого выражения для лазера с модуляцией добротности достаточно очевидна. Дело ъ том, что в обоих режимах генерации пороговое условие одинаково к концу импульса накачки в активной среде должна быть -создана пороговая инверсная населенность Л/ р.пор, соответствующая потерям излучения в резонаторе на элементах и выходном зеркале (модулятор добротности к концу импульса выключается). Поскольку в лазерах с модуляцией добротности выполняется н<.Ти то функция Пренебрегая малой критической  [c.136]

Поскольку при модуляции добротности достигается большой начальный коэффициент усиления активной среды /Со, то прозрачность выходного зеркала может быть заметно выше, чем при свободной генерации. Приближенный анализ оптимальных суммарных потерь излучения в резонаторе приведен в [41]. С точки -Зрения максимума внутрирезонатбрной мощности и минимума. длительности импульса излучения лазера потери резонатора должны быть такими, чтобы выполн ялось соотношение Npo/ p.nop = = 3,5 (при этом накачка считается заданной). В принятых нами обозначениях это соответствует превышению порога генерации - чх = 3,5. Для практики, как правило, интерес представляет не внутрирезонаторная, а выходящая наружу мощность излучения. В этом случае необходима искать оптимальное значение не пол- ных Кпу а только излучательных (через выходное зеркало) потерь резонатора Кр, считая внутрирезонаторные потери заданными, к .  [c.136]


Смотреть страницы где упоминается термин Активная модуляция добротности резонатора : [c.30]    [c.90]    [c.284]    [c.367]    [c.228]    [c.120]   
Смотреть главы в:

Физика процессов в генераторах когерентного оптического излучения  -> Активная модуляция добротности резонатора



ПОИСК



Добротность

Добротность резонатора

Модуляция

Модуляция добротности

Модуляция добротности активная

Режим генерации гигантских импульсов при активной модуляции добротности резонатора

Резонатор активный

Резонаторы



© 2025 Mash-xxl.info Реклама на сайте