Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фазовый второго рода

В работах И, 5J сообщается о превращении е р при пони температуры. В работе [5] оно оценивается как фазовый второго рода (в интервале температур 0—66 °С), в работе 4 "  [c.840]

Переход фазовый второго рода 211, 213, 214  [c.242]

Особенность этой обработки — нагрев выше температур фазового превращения и охлаждение с малой скоростью — приводит сплав к структурному равновесию. Такая термическая обработка называется также отжигом. В отличие от обработки первой группы можно, назвать ее отжигом второго рода, или фазовой перекристаллизацией.  [c.225]


Несмотря на сходство по внешнему виду диаграмм, представленных на рис. 174,а и рис, 1746, ни один из сплавов этой диаграммы не может быть подвергнут отжигу второго рода, закалке или отпуску. Вертикальная линия DF показывает отсутствие изменения растворимости при изменении температуры, и поэтому фазовые превращения отсутствуют у всех сплавов.  [c.229]

В сверхпроводниках первого рода сверхпроводящее состояние достигается фазовым переходом второго рода при температуре Тс, которая зависит от рода металла, его чистоты, степени отжига, величины приложенного магнитного поля. Для некоторых металлов в нулевом магнитном поле сверхпроводящий переход позволяет реализовать реперную температурную точку. Считается, что ширина перехода достаточно мала и, наблюдая переход, можно определить его температуру. Эти вопросы детально исследовались в НБЭ [69], в результате-чего было соз-  [c.166]

В отличие от фазовых переходов первого рода, таких, как точки плавления или кипения, при фазовых переходах второго рода отсутствует скрытая теплота перехода. Поэтому такие переходы используются лишь как индикатор определенной температуры, а не способ ее поддержания. При затвердевании чистых металлов, которое обсуждается ниже, образец металла будет оставаться при температуре затвердевания, хотя его окружение охлаждается. В случае сверхпроводящих переходов отсутствие скрытой теплоты перехода не создает серьезных проблем. Это объясняется тем, что при низких температурах легко обеспечить необходимую точность терморегулирования, а теплоемкости и теплопроводности материалов таковы, что неоднородности температуры в криостате и инерционность объектов регулирования не создают никаких затруднений.  [c.168]

Ко второй группе относятся процессы нагрева металла выше температуры превращения с последующим медленным охлаждением для получения устойчивого состояния. Этот вид термообработки основан на процессах фазовых превращений и является отжигом второго рода (фазовой перекристаллизацией).  [c.111]

Такие фазовые превращения, которые характеризуются скачками объема, внутренней энергии, энтропии и ряда других параметров, а также конечной теплотой перехода, называют фазовыми переходами первого рода. Помимо них бывают еще фазовые переходы второго рода, при которых энтропия непрерывна и теплота перехода отсутствует, но испытывает скачок, например, производная дЗ/дТ. Мы не будем их касаться. Укажем только для примера, что таким образом парамагнитное вещество переходит в ферромагнитное состояние, а металл —из нормального в сверхпроводящее.  [c.123]


Поверхность нормалей. Аналогичным образом вводится так называемая поверхность нормалей, представляющая собой геометрическое место концов отрезков, равных в данном направлении VNt и vnI v f mvn — скорости по нормали). Поверхность нормалей также представляет собой двухполостную самопересекающуюся в четырех точках, поверхность. Проведенные через эти четыре точки две линии, расположенные симметрично относительно главных осей индикатрисы, вдоль которых свет распространяется с единственной фазовой скоростью, являются оптическими осями второго рода.  [c.258]

На этапе завершения роста первичных фрактальных кластеров в системе возникает конкуренция между процессами дальнейшего роста кластеров по. механизму кластер-частица (Л/,/4-механизм) и механизму кластер-кластерной агрегации (СО-механизм). Данный временной интервал с наличием конкурирующих ОЬА/ССА-механизмов агрегации частиц новой конденсированной фазы можно отождествить со структурным фазовым переходом второго рода (рис. 63), при котором происходит дальнейшее уплотнение системы.  [c.89]

Рис 63 Последовательность фазовых переходов второго рода в процессе кристаллизации сталей (1,2,3)  [c.90]

Итак, кристаллизация из расплава сталей относится к фазовым переходам первого рода в открытой неравновесной системе, который осуществляется посредством последовательно-параллельных фазовых переходов второго рода. Управляющим механизмом структурообразования по иерархической схеме является принцип минимума производства энтропии в процессе диссипации энергии.  [c.92]

С потерей химической стабильности данная зона приобретает свойство механической стабильности, которое заключается в пластичности, возможности легкой перестройки взаимного расположения атомов благодаря изменению их координационного числа. При воздействии механических нагрузок в пористой структуре происходят внутренние трансформации в наиболее энергетически выгодную для восприятия данной нагрузки локальную структуру. Такая трансформация осуществляется посредством структурных фазовых переходов второго рода.  [c.123]

Так как в процессе создания и эксплуатации конструкционных материалов дефекты кристаллической структуры возникают неизбежно как результат диссипации вносимой в материал энергии (см. п. 4.2), то границы представляют собой не фиксированную, а постоянно изменяющуюся фазу, в которой происходят процессы постоянного накопления дефектов и перестройки дефектной структуры материала. Это осуществляется посредством структурных фазовых переходов второго рода. Барьер энергии активации фазовых переходов преодолевается при нагружении материала в процессе эксплуатации. Кинетика фазовых переходов из одного состояния в другое и определяет свойства границ и всего материала в целом.  [c.126]

С другой стороны, наступление момента конкуренции процессов Z)iA 4-сборки можно интерпретировать как приближение в системе к порогу перколяции в отношении напряженности и взаимодействия локальных силовых полей от сформированных фрактальных кластеров. Достижение же критического значения концентрации фрактальных кластеров конденсированной фазы обусловливает перколяционную структуру электрических взаимодействий между ними. Для систем, погруженных в пространство с евклидовой размерностью Е=Ъ фрактальная размерность частиц, соответствующая порогу перколяции, Df 2,5 [35]. В условиях стационарного воздействия на систему отрицательного температурного градиента (охлаждения системы внешней средой) описанное состояние системы катализирует таким образом дальнейший процесс агрегации по ССЛ-механизму. Подобным образом развивается волнообразный цикличный характер дальнейшей цепочки фазовых переходов второго рода (рис. 3.13), обусловливающий наиболее эффективный путь диссипации энергии посредством структурообразования по иерархическому принципу в открытой неравновесной системе охлаждаемого расплава.  [c.135]

При температуре 2,19 К жидкий гелий (изотоп Не) имеет так называемую 1-точку (фазовый переход второго рода) ). Ниже этой точки жидкий гелий (в этой фазе его называют Не II) обладает рядом замечательных свойств, из которых наиболее существенным является открытая П. Л. Капицей в 1938 г, сверхтекучесть— свойство протекать по узким капиллярам или щелям, не обнаруживая никакой вязкости.  [c.706]


Сечения поверхности нормалей плоскостями ху, хг и уг показаны на рис. 17.18. В каждом сечении поверхности нормалей получается круг и эллипс. В двух направлениях О О и О"О" (рис. 17.18, б) фазовые скорости обеих волн в кристалле совпадают. Эти направления называются оптическими осями второго рода, или бинормалями.  [c.45]

В точке нормального перехода Т = 7 и Я р =0 фазовый переход становится переходом второго рода, так как L = S = 0. 13 этом случае (32,3) принимает следующий вид  [c.362]

Теория Ландау—Гинзбурга п ее обобщения. Следуя общей теории фазовых переходов второго рода, развитой Ландау и Лифшицем [75] Гинзбург и Ландау предположили, что вблизи точки перехода Гкр. разность свободных энергий сверхпроводящей и нормальной фаз может быть разложена в ряд по степеням некоторого параметра упорядочения ш, определяемого таким образом, чтобы ш.= 0 в нормальной фазе и ш=1 в сверхпроводящей фазе при 7 = 0° К (см. п. 4)  [c.732]

Фазовые переходы второго рода — фазовые переходы, не сопровождающиеся тепловым эффектом и 1гз-менением объема. Пример — переходы некоторых металлов в сверхпроводящее состояние.  [c.204]

В настоящее время нет никаких оснований для проведения резкой грани между термодинамикой и статистической физикой тем не менее определенное преимущество термодинамики и особенность ее методов диктуют важность отдельного изложения термодинамики с привлечением необходимых качественных молекулярных представлений. Она позволяет с помощью своих начал легко учитывать наблюдаемые на опыте закономерности и получать из них фундаментальные следствия. Именно на этом пути в свое время было предсказано вырождение газов при низкой температуре, развита теория фазовых переходов второго рода, формируется термодинамическая теория кинетических явлений в физических системах неравновесная термодинамика или термодинамика необратимых процессов).  [c.10]

СУЩЕСТВОВАНИЕ ФАЗОВЫХ ПЕРЕХОДОВ ВТОРОГО РОДА. ЛЕГКОСТЬ СКОЛЬЖЕНИЯ КОНЬКОВ ПО ЛЬДУ.  [c.166]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]

Явление, напоминающее критическую опалесценцию, происходит также вблизи температуры фазового перехода второго рода. Как показали И. А. Яковлев п др. , в узком температурном интервале (ЛТ при фазовом переходе второго рода в кварце интенсивность рассеянного света возрастает Ю" раз по отношению к интенсивтюстп света, рассеянного по обе стороны от температуры перехода. Это явление хороню объясняется и количественно описывается теорией рассеяния света, развитой акад. Гинзбургом при фазовых переходах второго рода в области критической точки Кюри.  [c.311]

Фазовый переход второго рода приводит к возникновению в неравновесной кристаллиз>тощейся системе след тощего масштабного уровня иерархической самоорганизации структуры. Каждый масштабный уровень организации иерархической структуры имеет свои "элементарные кирпичики", которые являются конечными структура.ми предыдущего уровня. Поскольку при кристаллизации происходит процесс уплотнения вещества, назовем Элементарные кирпичики для всех структурных уровней элементами уплотнения. Это означает, что на начальном этапе строительства какого-либо масштабного уровня система строит из элементов уплотнения структуру, более плотную по сравнению со структурой предыдущего уфовня.  [c.89]

Таким образом, процессы формирования зон переходного поверхностного слоя в процессе диссипации энергии нагружения в области вершины трещины протекают посредством структурных фазовых переходов второго рода (например, аморфизация материала у вершины трещины и образование структур предплавления). Фрактальная структура различных зон поверхностных переходных слоев подразумевает значительный разброс (флуктуации) по размерам дефектов в переходном слое. Поэтому вблизи вершины кончика трещины присутствуют микронесплошности и поры, способные в локальной области самостоятельно генерировать процесс достройки структуры поверхностного переходного слоя. В данном случае наблюдается опережающее образование микротрещин вблизи кончика генеральной трещины.  [c.131]

Фазовый переход второго рода приводит к возникновению в неравновесной кристаллизующейся системе следующего масштабного уровня иерархической самоорганизации стру[оуры. Каждый масштабный уровень организации иерархической структуры имеет свои "элементарные кирпичики, которые являются конечными структурами предыдущего уровня. Поскольку при кристаллизации происходит процесс уплотнения вещества, назовем эле-  [c.132]


Охлам<дение сверхпроводника приводит, во-первых, к тому, что при Т = Тс происходит скачок теплоемкости без появления скрытой теплоты. Это означает, что сверхпроводящий переход является фазовым переходом второго рода. Во-вторых, при Т< Тс зависимость теплоемкости от температуры определяется выражением вида  [c.264]

Заключительные замечания. Хотя существует некоторое качественное представление о природе сверхпроводящего состояния, мы до сих пор не имеем строгой математической теории или даже физической картины различия между нормальным п сверхпроводящим состояниями. Сверхпроводник представляет собой упорядоченную фазу, в которой квантовые эффекты распространяются на большие расстояния в пространстве (порядка 10 см для чистых металлов). Эта большая протяженность волновых пакетов, несомненно, объясняет магнитные свойства сверхпроводников. Как и в случае других фазовых переходов второго рода, сверхпроводник, по-видимому, характеризуется некоторым параметром порядка, который обращается в нуль в точке перехода. Однако существуюпцге физические толкования параметра упорядочения неубедительны, и у нас нет никакого представления о том, как параметр упорядочения связан с реальными величинами.  [c.777]


Смотреть страницы где упоминается термин Фазовый второго рода : [c.309]    [c.410]    [c.509]    [c.511]    [c.310]    [c.256]    [c.626]    [c.709]    [c.132]    [c.717]    [c.415]    [c.632]    [c.634]    [c.681]    [c.86]   
Компьютерное материаловедение полимеров Т.1 (1999) -- [ c.112 ]



ПОИСК



I рода

I рода II рода

Коэффициент давления термический при фазовых переходах второго рода

Критическая опалесценция и рассеяние света при фазовых переходах второго рода

Молекулярное рассеяние света в кристалле кварца при фазовом превращении второго рода

Отжиг второго рода (фазовая перекристаллизация)

ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ И ФАЗОВЫЕ РАВНОВЕСИЯ ll-il. Капиллярные эффекты первого и второго рода

Переходы фазовые второго рода

Переходы фазовые второго рода первого рода

Переходы фазовые критические рода второго

Рассеяние при переходе жидкость стекло фазовом второго рода

Рассеяние света при фазовых переходах второго рода

Релаксация параметра порядка вблизи точки фазового перехода второго рода

Родан

Родиан

Родий

Родит

Существование фазовых переходов второго рода. Легкость скольжения коньков по льду. Знак термодинамической температуры

Теория Ландау фазовых переходов второго рода

Термодинамическая теория фазовых превращений второго рода и критических явлений

Фазовые переходы второго рода. Точка Кюри ферромагнетика

Фазовые переходы второго рода. Уравнения Эренфеста

Фазовые превращения второго рода

Фазовые превращения второго рода и критические явления

Фазовые превращения, первого рода второго роДа

Фазовый 1-го рода

Фазовый переход второго рода газа ван дер Ваальса

Фазовый переход второго рода и-го рода

Фазовый переход второго рода порядок — беспорядок

Фазовый переход второго рода теория Янга

Фазовый переход второго рода теплота

Фазовый переход первого и второго рода



© 2025 Mash-xxl.info Реклама на сайте