Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фазовые переходы второго рода. Уравнения Эренфеста

Фазовые переходы второго рода. Уравнение Эренфеста  [c.211]

Термин фазовые переходы второго рода впервые (1933) ввел П. Эренфест при рассмотрении непрерывного сверхтекучего перехода в жидком гелии. Он считал, что вторые производные от энергии Гиббса при этом переходе испытывают скачки, и получил соотношения между ними (уравнения Эренфеста, см. 60). Термином фазовый переход второго рода (или 1-переход) стали потом называть и все другие непрерывные переходы. Позже, однако, оказалось, что при сверхтекучем переходе в гелии вторые производные от энергии Гиббса не испытывают скачки, а обращаются в бесконечность. Этот переход, следовательно, является критическим, и к нему уравнения Эренфеста неприменимы. Но в литературе и сейчас сверхтекучий переход в гелии и другие непрерывные фазовые превращения называют фазовыми переходами второго рода. Чаще, однако, непрерывные переходы называют критическими переходами, что более правильно. Фазовым переходом второго рода является превращение проводника в сверхпроводник при Я = 0. Критическими переходами являются критический переход жидкость — газ, переход ферромагнетика в парамагнетик, сегнетоэлектрический переход и др.  [c.234]


При фазовых переходах второго рода испытывают скачки удельная теплоемкость Ср, сжимаемость Рт- и коэффициент теплового расширения а. Связь между этими скачками и наклоном кривой перехода в соответствующей точке определяется уравнениями Эренфеста. Найдем эти уравнения.  [c.237]

Таким образом, уравнения Эренфеста определяют широкий класс фазовых превращений — линейные фазовые переходы первого рода и фазовые переходы второго рода.  [c.239]

Термин фазовые переходы второго рода впервые (1933 г.) ввел П. Эренфест при рассмотрении непрерывного сверхтекучего перехода в жидком гелии. Он считал, что вторые производные от энергии Гиббса при этом переходе испытывают скачки, и получил соотношения между ними (уравнения Эренфеста, см. 43). Термином фазовый переход второго рода (или .-переход) стали потом называть и все другие непрерывные переходы. Позже, однако, оказалось, что при сверхтекучем переходе в гелии вторые производные от энергии Гиббса не испытывают скачки, а обращаются в бесконечность. Этот переход, следовательно, является критическим, и к нему уравнения Эренфеста неприменимы. Но в литературе и сейчас сверхтекучий переход в гелии и другие непрерывные фазовые превращения называют фазовыми переходами второго рода. Чаще, однако, непрерывные переходы называют  [c.161]

Воспользовавшись уравнением Клапейрона—Клаузиуса, получить уравнения Эренфеста для фазовых переходов второго рода.  [c.58]

Выражения (32.4), (32.5) и (32.6) называются уравнениями Эренфеста. При изучении фазовых переходов второго рода данные соотношения играют ту же роль, что уравнение Клапейрона — Клаузиуса для переходов первого рода.  [c.214]

Уравнения (2-53) и (2-54) (уравнения Эренфеста) заменяют для фазовых переходов второго рода уравнение Клапейрона — Клаузиуса, связывая производную вдоль кривой равновесия второго рода со скачками вторых пооизводных от потенциалов фаз. Решая эти  [c.43]

Уравнения Эренфеста связывают скачки вторых производных термодинамического потенциала не только при фазовых переходах второго рода, но и в случае целого ряда фазовых переходов первого рода. Примером такого перехода первого рода является переход из упорядоченного состояния в неупорядоченное в сплавах АиСпз, Au u и др. Характерной особенностью этих фазовых  [c.238]


Уравнения Эренфеста связывают скачки вторых производных термодинамического потенциала не только при фазовых переходах второго рода, но и в случае целого ряда фазовых переходов первого рода. Примером такого перехода первого рода является переход из упорядоченного состояния в неупорядоченное в сплавах АиСиз, Au u и др. Характерной особенностью этих фазовых переходов является постоянство скачков объёма и энтропии на всей линии превращения  [c.166]

Сопоставление экспериментальных значений Ср, (дЫдТ)р, др1дТ на линии максимумов теплоемкости показывает также, что уравнение Эренфеста для фазовых переходов второго рода в точках линии максимумов Ср не удовлетворяется поэтому предполагать, что здесь имеет место фазовый переход второго рода, неправомерно.  [c.286]

Уравнение (5-26), впервые полученное В. Кеезомом в 1924 г., для фазового перехода в сверхпроводнике аналогично уравнению Клапейрона—Клаузиуса для обычных систем. Температура (при Як = 0) играет в некоторой степени ту же роль, что и критическая температура системы жидкость—пар (обращение в нуль теплоты перехода, скачка энтропии и т.- д.). Однако в критической точке системы жидкость — пар переход не является фазовым переходом второго рода (по классификации Эренфеста). В частности, следует отметить, что в критической точке ряд вторых производных от термодинамического потенциала, таких, как теплоемкость Ср, величины (dv/dT)p, (dvldp)T и др., обращается в бесконечность.  [c.123]


Смотреть страницы где упоминается термин Фазовые переходы второго рода. Уравнения Эренфеста : [c.238]    [c.165]    [c.184]    [c.194]   
Смотреть главы в:

Термодинамика  -> Фазовые переходы второго рода. Уравнения Эренфеста

Термодинамика и статистическая физика  -> Фазовые переходы второго рода. Уравнения Эренфеста



ПОИСК



I рода

I рода II рода

Переход второго рода

Переходы фазовые второго рода

Родан

Родиан

Родий

Родит

Уравнение перехода

Уравнения Эренфеста

Уравнения второго рода

Фазовые переходы I и II родов

Фазовый 1-го рода

Фазовый второго рода

Фазовый переход

Фазовый переход второго рода и-го рода

Эренфесты



© 2025 Mash-xxl.info Реклама на сайте