Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы авиационные

Материалы авиационные, механические свойства и характеристики 329 — 330 (табл. 8.14) —331 (табл. 8.15) — 333 (табл. 8.14) — 331 (табл. 8.15) — 333 (табл. 8.16)— 334 (табл. 8.17) — 335 (табл. 8.18)— 336 (табл. 8.19)—343 Мезопауза 12—13 Мезосфера 12—13 Местонахождение самолета 261 Металл деформированный, влияние нагрева 137 Металлизация 236—237 Механизация крыла самолета 17, 158 Момент разворачивающий 27  [c.383]

Чем отличаются механические характеристики, применяемые для материалов авиационной техники  [c.220]


В период Великой Отечественной войны возникли осложнения с обеспечением необходимыми материалами авиационной промышленности вследствие эвакуации заводов из районов Юга и Центра. ВИАМ оказал большую помощь в освоении производства металлов для авиации на заводах Урала и Сибири. Поставка металла для авиационной промышленности распределялась следующим образом (в процентах к общему выпуску)  [c.47]

Технические характеристики для материалов авиационных ГТД  [c.18]

Сплав 01420 является самым легким алюминиевым сплавом, его плотность 2,5 г/см что меньше плотности чистого алюминия (2,7 г/см ) и тем более высоколегированного сплава В95 (2,9 г/см ), что для авиационных материалов весьма существенно.  [c.588]

Жесткость имеет большое значение для машин облегченного класса (транспортные машины, авиационная, ракетная техника). Стремясь облегчить конструкцию и максимально использовать прочностные ресурсы материалов, конструктор в данном случае повышает уровень напряжения, что сопровождается увеличением деформаций. Широкое применение равнопрочных, наиболее выгодных по массе конструкций, в свою очередь, вызывает увеличение деформаций, так как равнопрочные конструкции наименее жесткие.  [c.202]

Развитие энергетики, авиационной и ракетной техники привело к тому, что раннее разрушение (в некоторых случаях) допускается в условиях эксплуатации конструкционных материалов. В связи с этим, наряду с оценкой чувствительности материалов к трещинам, большое значение начинает приобретать также и теоретический анализ трещин. Наука о прочности материалов и конструкций, которая связана с изучением несущей способности тела, как с учетом начальных трещин, так и без него, а также с изучением различных закономерностей развития трещин, называется механикой разрушения.  [c.117]

Критерий оптимальности АСГ выбран исходя из генеральной линии в разработке авиационного оборудования, направленной на уменьшение массогабаритных показателей. Обычно рассматривается показатель полетной или стартовой массы, учитывающий дополнительные массы (топлива, двигателя и т. п.), необходимые для функционирования АСГ. Однако в связи с тем что система охлаждения АСГ задана, а выбор основных характеристик авиадвигателей, топливных баков, планера и другие предшествует проектированию АСГ, в первом приближении за критерий оптимальности принята собственная масса М, которая складывается из активной и конструктивной масс. В качестве конструктивных материалов АСГ широко применяются легкие алюминиевые и магниевые сплавы. Поэтому зависимость конструктивной массы от конфигурации активной части слабее, чем в электрических машинах общепромышленного назначения. Это позволяет представить М в виде произведения  [c.201]


Внедрение в технику тонкостенных конструкций и создание высокопрочных конструкционных материалов привели к существенному снижению их веса. Это способствовало бурному развитию авиационной и ракетной техники, судостроения, энергетики, технологии и др. Однако чем тоньше элемент конструкции, тем он более гибок, тем в большей мере проявляется его способность к выпучиванию и потере устойчивости при сжатии. Поэтому неустойчивость — это беда (бич) всех тонкостенных конструкций.  [c.317]

Успехи авиационной техники были всегда тесно связаны с прогрессом в области изыскания более жаропрочных и жаростойких сплавов и одновременно легких металлических материалов. Из Периодической системы элементов Д.И. Менделеева, открытой в 1869 г., в настоящее время находят непосредственное применение в авиамоторной технологии 62 химических элемента.  [c.11]

Например, развитие авиационной и космической техники требует создания новых жаропрочных и жаростойких материалов, способных длительное время работать при высоких температурах (1000°С и выше).  [c.31]

Тантал и его сплавы на основе хрома, вольфрама и ниобия содержат 1 - 2 легирующего элемента и являются перспективными материалами, работающими при температурах 1500°С и выше для авиационной и космической техники. Диаграммы состояния Та - Nb и Та - W представлены на рис. 44.  [c.94]

До недавнего времени в практических задачах инженерной механики эти вопросы на передний край не выдвигались. Это не значит, что анизотропные материалы не находили применения. С ними давно приходится иметь дело. Вспомним хотя бы резинокордную конструкцию автомобильных и авиационных шин, где резиновая оболочка армирована стальными или нейлоновыми нитями, образующими косоугольную сетку. Можно вспомнить и фанерные анизотропные панели, применявшиеся в прошлом для оклейки несущих плоскостей самолетов. Можно привести и другие примеры, где анизотропия фигурирует  [c.336]

До недавнего времени в практических задачах инженерной механики эти вопросы на передний край не выдвигались. Это не значит, что анизотропные материалы не находили применения. С ними давно приходится иметь дело. Вспомним хотя бы резинокордную конструкцию автомобильных и авиационных шин, где резиновая оболочка армирована стальными или нейлоновыми нитями, образующими косоугольную сетку. Можно вспомнить и фанерные анизотропные панели, применявшиеся в прошлом для оклейки несущих плоскостей самолетов. Можно привести и другие примеры, где анизотропия фигурирует как важный фактор расчетной схемы. И все же, несмотря на несомненную важность и даже заслуженность подобных прикладных задач, следует признать, что все они узконаправленны и по своей общности существенно уступают тому богатству структурных схем, которое раскрывается перед нами в связи с применением композиционных материалов. Сейчас немыслимо представить авиационную и ракетно-космическую технику без применения композитов. Композиционные материалы уже охватили многие отрасли промышленности, в том числе производство предметов домашнего обихода. Не будет преувеличением сказать, что человечество стоит уже на пороге нового века — века композитов.  [c.285]

Реализация возможностей научно-технической революции требует крупных затрат. Однако государство располагает определенными ресурсами, которые оно может направить на эти цели. Поэтому необходимо выбирать и развивать наиболее важные направления научно-технического прогресса, последовательно проводить единую государственную техническую политику. Одной из основных задач технической политики является создание качественно новых орудий труда, новых материалов и более совершенной технологии, что, в частности, имеет особое значение для современной авиационной техники.  [c.3]

В некоторых случаях к проектируемым частям конструкций предъявляются еще и другие специальные требования например, при проектировании деталей самолета и авиационного двигателя таким специальным требованием является минимальный вес. Разные требования, конечно, предъявляются к временным сооружениям, строящимся, скажем, на время монтажа какой-либо конструкции, и к сооружениям, строящимся на многие годы. Некоторые из требований, предъявляемых к конст- рукции, находятся во взаимном противоречии, например прочность, легкость и экономичность. Так, увеличивая толщину стенки цилиндра поршневого авиационного двигателя, повышают прочность, надежность цилиндра, но зато вес его получается большим или коленчатый вал того же двигателя из-за требований легкости высверливается, вал делается легче, но обработка, а значит, и полная стоимость его удорожаются. Противоречивость этих требований является одним из побудителей развития науки о сопротивлении материалов.  [c.12]


Те отрасли промышленности, к изделиям которых предъявляются повышенные требования, особое внимание при внедрении новых технологических процессов уделяют их надежности. Так, например, более широкое применение точных отливок в авиационной промышленности привело к необходимости проведения таких мероприятий как строгая приемка материалов, поступающих со стороны, повышение точности пресс-форм, создание более совершенных технологических процессов монтажа моделей, приготовления покрытий и изготовления форм, тщательный контроль шихты, плавки, заливки, очистки отливок и их термообработки, механические испытания образцов, вырезанных из отливки, систематическая проверка контрольно-измерительной аппаратуры и инструмента и др.  [c.446]

Алюминиевые сплавы на основе этой четверной системы относятся к термически упрочняемым, обладают самой высокой прочностью (а до 750-800 МПа у прессованных полуфабрикатов) и наряду с дуралюминами являются основным кон-стрзтадионным материалом авиационной и ракетной техники. Марки и химический состав приведены в табл. 16.36.  [c.666]

Предел прочности при растяжении текстильных волокон колеблется в широких пределах от 16— 18 кг1мм для шерсти до 220 кг1мм для стекловолокна и 300 кг мм для асбеста. Ввиду затруднительности точного измерения размеров поперечного сечения пряжи, тканей и др. изделий принято пользоваться для сравнения текстильных материалов разных размеров понятием разрывной длины, определяемой как отношение предела прочности материала к весу единицы его длины. Разрывной длиной является та минимальная длина материала, при которой он, будучи свободно подвешен, разорвется под действием собственного веса. Разрывная длина характеризует удельную весовую прочность, особенно важную для материалов авиационного назначения. Поэтому в табл. 25 и далее при описании отдельных текстильных материалов приводятся значения их разрывных длин.  [c.295]

Однако ПО другим свойствам уступают текстолитам и гетинаксам. Применяют их для изготовления лопаток ротационных насосов авиационных двигателей, фрикционных ведущих дисков гидравлических передач, монтажных электрощитков (при низких напряжениях тока) и как термоизоляционные материалы  [c.361]

Автор выражает благодарность преподавателям кафедры сопротивления материалов Московского авиационного института им. С, Орджоникидзе за полезные замечания по рукописи учебника и особенно Д-ру техн, наук, проф, И. И, Трапезину, канд, техн, наук, доц, В. Ф. Караванову, доц, М. Н. Михайлову.  [c.3]

В основу этого пособия положены конспекты лекций по автоматизации проектирования и теории электрических машин, прочитанных автором для преподавателей, аспирантов и студентов в Московском авиационном институте (МАИ) им. С. Орджоникидзе, во Всесоюзном заочном политехническом институте (ВЗПИ) и Ереванском политехническом институте им. К. Маркса, Кроме того, приведены материалы научно-исследовательских и проектно-конструкторских работ, выполненных под руководством автора в МАИ и ВЗПИ в период с 1963 г. по настоящее время, материалы по систематизации и обобщению докладов руководимого автором всесоюзного семинара АН СССР и Министерства высшего и среднего специального образования СССР по проблеме Автоматизация проектирования электротехнических устройств и систем . Учитывая эти обстоятельства, можно предположить, что пособие будут использовать не только для подготовки в вузах разработчиков и пользователей САПР в области электромеханики, но оно будет также полезно слушателям факультетов повышения квалификации, преподавателям, научным работникам и инженерам соответствующего профиля.  [c.5]

На рис. 5.2 приведена семантическая модель расчетного проек--гиррвания СГ с принудительным охлаждением. Эта модель является основой для разработки алгоритмов и программ оптимального проектирования авиационных СГ [8]. Исподные данные включают требования и данные ТЗ, справочные данные о магнитных, электрических и изоляционных материалах активной части, требования и данные стандартов и отраслевых нормалей, ограничения техноло-  [c.119]

Во второй половине XIX и начале XX в. для развития механики много сделали русские ученые. Мировое значение в науке имеют научные труды П. Л. Чебышева (1821—1894 гг.). Он создал основы науки Теория механизмов и машин , выделившейся из теоретической механики. Ученые Н. Е. Жуковский (1847—1921 гг.) и С. А. Чаплыгин (1869—1942 гг.) решили ряд слол-сных проблем теоретической и прикладной механики, ими заложены основы аэродинамики и авиационной науки, имеющие большое теоретическое и прикладное значение. Русские ученые Д. И. Журавский (1821 — 1892 гг.), В. Л. Кирпичев (1845—1913 гг.) и другие внесли большой вклад в формирование сопротивления материалов как отдельной общеинженерной дисциплины.  [c.6]

Авторы выражают благодарность коллективу кафедры сопротивления материалов Московского авиационного института, возглавляемой И. И. Трапезиным, за многие полезные замечания.  [c.6]

В учебном пособии изложены теоретические основы алектроматериаловедения, касающиеся изучения структуры и свойств металлов и сплавов, применяемых в авиационном приборостроении. Приведены материалы, устанавливающие зависимость физикохимических свойств электротехнических сплавов от их строения, а также сведения о методах формирования у сплавов специальных свойств. Значительное место в учебном пособии отведено изучению конкретных групп электротехнических сплавов — конструкционных, магнитных, проводниковых, с особыми тепловыми свойствами, полупроводников.  [c.2]

Основными требованиями, предъявляемыми к конструкционным металлам и сплавам являются прочность и пластичность, высокие упругость и износостойкость, жаростойкость и жаропрочность, стойкость к криогенным температурам, высокая коррозионная стойкость, стойкость к тепловым ударам и перегрузкам, технологичность, стойкость к радиационому облучению, экономичность. Непременным требованием, предъявляемым ко всем авиационным материалам, является их высокий коэффициент качества, т. е. отношение величины данной характеристики материала к плотности.  [c.261]


В авиационной технике полупроводниковые материалы используют в приборах для генерации и усиления электрических сигналов и выпрямления переменного тока (диоды) и в качестве фотосопротивления и фотодиодов. Термоэлектрические свойства полупроводников позволяют применять их в качестве термосопротивлений, термоэлементов, термостабилизаторов и при создании солнечных батарей. Магнитные свойства полупроводниковых материалов (окислы металлов переходных групп, соединения металлов с серой, теллуром и селеном) позволяют применять их при изготовлении малогабаритных антенн, транс-  [c.279]

Сварные конструкции классифицируют по методу получения исходных заготовок (листовые, листосварные, кованосварные, штампосварные), по целевому назначению (вагонные, судовые, авиационные и т. д.), по толщине свариваемых элементов (тонкостенные и толстостенные) или по применяемым материалам (стальные, алюминиевые, титановые и др.). В зависимости от характерных особенностей работы выделяют следующие типы сварных элементов и конструкций балки, колонны, оболочковые конструкции, корпусные транспортные конструкции и детали машин и приборов.  [c.152]

По отношению к суммарным напряжениям /(д = Одх/<Тсум = == 1,75 1,8 (1,5—1,65 в ГТД авиационного типа) [6, 13]. Современные материалы обеспечивают прочность компрессорных лопаток при Ортах = 300ч-350 МПа, а прочность газотурбинных лопаток при Ор гпах = 250- -300 МПа.  [c.279]

Титан обладает тремя основными преимуш,ествами по сравнению с другими техническими металлами малым удельным весом (4,5 Г1см ), высокими механическими свойствами (предел прочности 50—60 кГ1мм у технического титана и 80—140 кГ/мм у сплавов на его основе) и отличной коррозионной стойкостью, подобной стойкости нержавеющей стали, а в некоторых средах и выше. Сочетание малого удельного веса с высокой прочностью, обеспечивающее наибольшую удельную прочность (т. е. прочность на единицу веса), делает титан особенно перспективным материалом для авиационной промышленности, а коррозионная стойкость — в судостроении и в химической промышленности. Для современной высокоскоростной авиации особенно ценным свойством титановых сплавов является также их высокая жаропрочность сравнительно с алюминиевыми и магниевыми сплавами. Титановые сплавы по абсолютной и тем более по удельной прочности превосходят магниевые, алюминиевые сплавы и легированные стали в довольно широком температурном интервале.  [c.356]

Из этих материалов на заводе Metallwerke Plansee (Австрия) производятся опытные лопатки для авиационных газовых турбин. Как видно из табл. 27, с увеличением содержания цементирующего Ni—Со—Сг-сплава повышается ударная вязкость, значения прочности при комнатной температуре, жароупорность и падает твердость и длительная жаропрочность.  [c.608]


Смотреть страницы где упоминается термин Материалы авиационные : [c.6]    [c.58]    [c.216]    [c.221]    [c.247]    [c.92]    [c.7]    [c.337]    [c.8]    [c.593]    [c.183]    [c.154]    [c.637]    [c.117]    [c.575]    [c.218]    [c.348]    [c.317]    [c.184]   
Энергетическая, атомная, транспортная и авиационная техника. Космонавтика (1969) -- [ c.38 , c.334 , c.343 , c.348 , c.364 , c.369 , c.379 , c.386 , c.462 ]



ПОИСК



Авиационные лакокрасочные материалы (Э. К- Кондрашов)

Авиационные материи

Авиационные материи

Выбор материалов для деталей авиационных конструкций

Критерии выгодности для ремонта авиационных материалов

Материал авиационный, механические и физические характеристик

Материал авиационный, прочностные характеристики

Материалы авиационные, механические свойства и характеристики

Материалы для авиационных газотурбинных двигатетей

Материя авиационная невоспламеняемая АНЗМ (ТУ Кожзаменитель двухслойный (ТУ МХП

Разработка схем скоростных самолетов-монопланов. Развитие конструкций авиационных двигателей. Изыскания новых конструкционных материалов

Свойства авиационных материалов

Создание научно-исследовательских институтов авиамоторостроения, авиационных материалов, летных исследований

Хранение авиационных текстильных материалов



© 2025 Mash-xxl.info Реклама на сайте