Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Робот основные виды движений

Рис. 14.5. Промышленный робот с основными видами движений Рис. 14.5. <a href="/info/250">Промышленный робот</a> с <a href="/info/4442">основными видами</a> движений

Основные виды движений робота  [c.261]

Основными видами дефектов промышленных роботов являются неправильное формирование закона движения, недостаточное демпфирование и жесткость выходных звеньев, погрешности сборки, погрешности профилирования и изготовления деталей пневмо- и гидроаппаратуры, погрешности настройки этой аппаратуры и системы управления, недостаточная мощность привода, неуравновешенность деталей, большие силы трения [ 1, 5].  [c.225]

При дуговой сварке в ряде случаев целесообразно разделять функции манипуляторов (роботов), служащих для перемещения сварочного инструмента и свариваемых изделий, хотя устройства обоих видов работают совместно, взаимосвязанно, по единой программе. Такой прием позволяет упростить кинематическую схему и снизить число необходимых степеней свободы самого робота. Программа, по которой сварочный робот выполняет свои движения, заранее вводится в его запоминающее устройство. Одним из основных преимуществ роботов является возможность легкой и быстрой смены программы в зависимости от особенностей свариваемого изделия.  [c.190]

Широкое распространение получили станки с гидроприводом, который применяют в качестве привода главного движения и движения подачи станка, для переключения скоростей, торможения, зажима обрабатываемых деталей, автоматизации управления циклом работы станка и т. д. В таких станках, как шлифовальные, протяжные, копировально-фрезерные, поперечно-строгальные и другие, гидропривод становится основным видом привода. Под гидроприводом понимают совокупность устройств, предназначенных для приведения в движение механизмов станков посредством рабочей жидкости, подаваемой под давлением. Гидропривод позволяет существенно упростить кинематику станков, снизить их металлоемкость, повысить точность, надежность работы, а также уровень автоматизации. Производство гидроприводов в промышленно развитых странах постоянно расширяется. Гидроприводами оснащают более половины выпускаемых промышленных роботов.  [c.82]

Рис. 21.1. Структурная схема промышленного робота основные элементы конструкции и виды движений рабочих органов Рис. 21.1. Структурная <a href="/info/125956">схема промышленного робота</a> <a href="/info/469609">основные элементы конструкции</a> и <a href="/info/11230">виды движений</a> рабочих органов

Помимо рассмотренных кинематических схем с тремя степенями свободы движения руки могут быть и другие, образуемые различным сочетанием видов движений и подвижностей функциональных механизмов робота. В практике роботостроения основное распространение получили кинематические схемы, приведенные на рис. 223, в, 224, а, которые обеспечивают соответственно цилиндрические (см. рис. 223, г) и сферические (см. рис. 224, б) рабочие зоны. Такие схемы допускают более высокую универсальность пространственных перемещений транспортируемых деталей, а выполненные на их основе конструкции роботов характеризуются компактностью.  [c.248]

Машины делят в основном на две большие группы машины-двигатели и рабочие машины. Машины- двигатели — энергетические машины, предназначенные для преобразования энергии любого вида в энергию движения исполнительных органов рабочих машин. К таким машинам относят электродвигатели, двигатели внутреннего сгорания, паровые машины и т. п. Рабочие машины предназначены для облегчения и замены физического труда человека по изменению формы, свойств, состояния, размера и положения обрабатываемых материалов, для перемещения различных грузов, а также для облегчения и замены его логической деятельности при выполнении расчетных операций и операций контроля и управления производственными процессами. К таким машинам относят всевозможные станки для обработки материалов, дорожные, сельскохозяйственные и транспортные машины, подъемные краны, транспортеры, вычислительные машины, устройства робототехники манипуляторы , автооператоры , промышленные роботы и др.  [c.6]

Система дифференциальных уравнений (3.1) представляет собой аналитическую запись основных физических закономерностей, которым подчиняются управляемые движения роботов и технологического оборудования, образующих РТК. Чтобы принять систему уравнений (3.1) за обобщенную динамическую модель РТК, нужно охарактеризовать область определения функции F и конкретизировать класс постоянно действующих внешних возмущений я. Областью определения функции F, задающей структуру и свойства уравнений динамики (3.1), является совокупность возможных значений переменных л и и и параметров . Границы этой области определены конструкционными ограничениями вида при всех t [4, trV,  [c.59]

Гука или кадданной передачи), этот-механизм служит для передачи вращательного движения между валами, оси которых пересекаются, Нешироко применяется в автомобилях, станках, приборах (входное и выходное звенья 1,3 выполнены в виде вилок, звено 2 — в виде крестовины, звено 4 — стойка О — точка пересечения осей) ж — структурная схема основного рычажного механизма одного из видов промышленного робота, это механизм с незамкнутой кинематической цепью AB DEF (звенья I—5 — подвижные, б — стойка, f —охват). Промышленные роботы в настоящее время находят все более широкое применение для выполнения самых различных технологических и вспомогательных операций сборки, сварки, окраски, загрузки и т. п.  [c.28]

Применение электроприводов для малогабаритных роботов сдерживалось отсутствием небольших высокомоментных электродвигателей с высоким динамическим качеством переходных режимов движения. В последние годы появились компактные приводные модули, в которых используются в основном трехфазные асинхронные электродвигатели, обеспечивающие требуемую точность некоторых видов роботов, например Мотор-палец , Мотор-рука , Зажим и двухскоростные модули фирмы Яскава Электрик (Япония), серия электромеханических модулей фирмы Тосиба (Япония) и др. В СССР разрабатывается ряд унифицированных комплектных электроприводов мощностью от 25 до 2,2-10 Вт на валу. Заметим, что вопросы создания различных приводов и устройств управления ими достаточно хорошо освещены в отечественной литературе (см., например, [1, 10]). Значительно меньше изучена проблема создания приводов прецизионных роботов, погрешность позиционирования которых не превышает десятых и даже сотых долей микрометра. В то же время развитие микроэлектроники, телемеханики, прецизионного приборостроения ставит задачи создания прецизионных роботов, объект манипулирования которых весьма небольшой — от отдельных биологических клеток до микросхем.  [c.25]


Важные технические характеристики ПР число степенен подвижности, количество механических рук и погрешность позиционирования. Числом степеней подвижности ПР называется число степенен свободы звеньев кинематической цепи относительно звена, принятого за неподвижное. Следует считать, что достаточно универсальными являются такие роботы, которые имеют 5...7 степеней подвижности, включая устройства передвижения. Роботы с большим количеством степеней подвижности являются высокоманевренными и применяются, в основном, для сборочных работ, роботы с меньшим количеством степеней подвижности выполняют специального назначения. Механическая рука ПР представляет собой. многозвенный разомкнутый механизм, заканчивающийся рабочим органом в виде захвата. Большинство ПР имеют одну механическую руку, но есть роботы, снабженные двумя, тремя и более механическими руками. Погрешность позиционирования робота опреде- 1яет степень точности движения его рабочих органов при многократном перемещении деталей определенной массы в заданное положение. На точность позиционирования, в основном, влияют грузоподъемность, конструкщ1я и кинематика рабочих органов, тип приводов и системы управления.  [c.224]


Смотреть страницы где упоминается термин Робот основные виды движений : [c.187]   
САПР и автоматизация производства (1987) -- [ c.261 ]



ПОИСК



Виды основные

Движение — Виды

Робот



© 2025 Mash-xxl.info Реклама на сайте