Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектр натрия

Сведения о режимах работы,спектре натру зок-наработках, при которых детали и узлы достигли предельного состояния и были заменены при ремонтах или отремонтированы  [c.148]

Спектральный анализ. Химический состав металлических сплавов и других веществ можно исследовать по спектру, получающемуся от свечения их в раскаленном состоянии. Когда металлы или их сплавы раскалены до состояния газа или пара, они дают характерную для каждого элемента линию спектра. Натрий, например, дает линию желтого цвета, галлий —линию зеленого цвета. Если в спектре появилось несколько линий,— значит в веществе находится несколько элементов. Метод замечателен тем, что позволяет обнаружить наличие элемента в сплаве, даже если его количество ничтожно мало, а также по интенсивности спектральной линии определить количество этого элемента. Спектральный анализ нашел самое широкое применение в промышленности, как очень точный и производительный метод исследования.  [c.30]


Рйс 17. Положение некоторых линий спектров натрия и ртути относительно кривой чувствительности глаза. Соотношения интенсивностей (обозначенных различной толщиной линий) характерны для дуги низкого давления. означает главную резонансную линию.  [c.40]

На рис. 5.7а показан фононный спектр натрия, как пример надежно определенного фононного спектра для металла. На рис. 5.76 показан фононный спектр ионного кристалла КВг.  [c.179]

Опыт. Спектральные линии. Наберите немного соли на мокрую поверхность ножа (или ложки, или гвоздя и т. п.) и поместите нож в пламя газовой горелки. Смотрите на желтое пламя через решетку (этот опыт лучше делать ночью в темной кухне). Заметьте, что изображение желтого пламени в первом и более высоких порядках оказывается столь же резким и ясным, как и прямое изображение нулевого порядка. Это объясняется тем, что желтый цвет образован спектральной линией , ширина которой очень мала. (В действительности желтый цвет натрия представляет собой дублет из двух линий с длинами волн 5890 и 5896 А.) Теперь посмотрите на пламя свечи. В нулевом порядке ее пламя мало отличается от пламени натрия они оба кажутся желтыми. Но уже в дифракционном изображении первого порядка пламя свечи сильно размыто, тогда как спектр натрия сохраняет свою резкость, Желтизна свечи, обязанная излучению атомов углерода, имеет спектр, распространяющийся в обе стороны от видимого спектра.  [c.468]

Вопрос.. Можно ли таким спектрометром разрешить дублет в спектре натрия ( 1=5890 А и 2=5896 А)  [c.468]

Примечания I РА коэффициент отражения для источника света типа А 2. Показатель преломления га ) взят но одной нз линий спектра натрия (А =>0,593 мки).  [c.350]

Буквой О по Фраунгоферу обозначена середина между линиями дублета для длин волн 589 и 589,6 нм в спектре натрия. Обычно индекс О у показателя преломления л опускается, и если индекс у п отсутствует, то предполагается, что показатель преломления указывается для длины волны 589,3 нм.  [c.42]

Как видно из рисунка, в области полос поглощения от М до /V показатель преломления резко уменьшается с увеличением длины волны, т. е. наблюдается аномальная дисперсия. Аналогичная зависимость наблюдалась и для других веществ (паров натрия и др.). У всех без исключения веществ существуют области аномальной дисперсии. Однако не обязательно, чтобы эти области для всех веществ находились в видимой части спектра. Например, такие прозрачные для видимого спектра тела, как стекло, кварц и др., не имеют аномальной дисперсии на всем протяжении видимого спектра. Аномальная дисперсия наблюдается для стекла в области около 3500 А, для кварца — около 1900 А, для флюорита — около 1300 А. Вообще для каждого вещества существует не одна, а несколько областей или полос поглощения. Поэтому полная дисперсионная картина вещества состоит из областей аномальной дисперсии, соответствующих областям внутри полос (или линий) поглощения, и областей нормальной дисперсии, расположенных между полосами (или линиями) поглощения.  [c.265]


Через интерферометр, состоящий из двух полупрозрачных (П и П ) и двух непрозрачных зеркал П и Я4) пропускается свет от источника сплошного спектра. Интерференционная картина, полученная в виде горизонтальных полос, с помощью линзы Лз проектируется на щель спектрографа. Спектрограф располагается так, чтобы щель его была направлена перпендикулярно к горизонтально расположенным полосам интерференции. В обе ветви интерферометров вводятся две одинаковые кюветы и Т . В одну из кювет (расположенную внутри вакуумной печи) вводится исследуемый материал, в данном случае пары натрия. Путем нагрева до нужной температуры можно получить пары натрия при необходимом давлении. Вторая кювета откачивается. Если кювета с металлом не нагрета, то из-за отсутствия паров натрия нулевая полоса (полоса, для которой разность хода двух интерферирующих лучей равна нулю) будет прямолинейной и пройдет через середину перпендикулярно расположенной щели спектрографа. Выше и ниже этой легко отличимой от других ахроматической полосы располагаются полосы первого, второго порядков и т. д. Так как расстояние между полосами тем больше, чем больше длина волны, а линии дисперсии интерферометра (линия дисперсии направлена вдоль оси у) и спектрографа (линия дисперсии направлена вдоль оси х) взаимно перпендикулярны, то в результате действия обоих приборов в пло-  [c.266]

Связь между аномальной дисперсией и поглощением позволила Кундту высказать соображение, что сильно поглощающие газы или пары должны также обладать аномальной дисперсией. Несколько лет спустя Кундту удалось наблюдать ожидаемое явление при лекционной демонстрации поглощения света парами натрия. Свет от источника разлагается в спектр при помощи вертикально поставленной призмы, дававшей спектр в виде горизонтальной полоски.  [c.542]

На пути лучей была расположена горелка, в пламя которой вводились пары натрия. На экране обнаружилось не только появление темной полосы в желтой части спектра, характерной для поглощения света в парах натрия, но и загиб спектральной полоски в разные стороны по бокам области поглощения. В этой случайно наблюденной картине Кундт сразу узнал явление аномальной дисперсии. Конусообразный столб паров натрия, поднимавшийся над горелкой, играл роль призмы с горизонтальным преломляющим ребром (основание внизу), скрещенной с первой стеклянной призмой, стоявшей вертикально. Как видно из рис. 28.4, более длинноволновая часть а преломляется сильнее, чем более коротковолновая область б, для которой показатель преломления даже меньше единицы.  [c.543]

Пары натрия имеют в желтой части спектра не одну линию поглощения, а две очень резкие и тонкие линии, расположенные на расстоянии 0,6 нм друг от друга. В описанном выше демонстрационном опыте плотность паров натрия была настолько велика, что обе линии поглощения и сливались в одну полоску D н детали явления не были различимы. Улучшенные условия опыта позволяют наблюдать картину гораздо отчетливее при значительной плотности пара видны широкая полоса поглощения и загибы на краях (рис. 28.5, а), при уменьшенной плотности пара — две области аномальной дисперсии, соответствующие двум линиям поглощения (рис. 28.5, б).  [c.543]

Особенно замечательно поглощение, обнаруживаемое при невысоком давлении в парах большинства металлов, представляющих собой собрание атомов, расположенных на значительном расстоянии друг от друга, т. е. практически изолированных. Коэффициент поглощения таких паров везде очень мал (близок к нулю) и лишь для очень узких спектральных областей (шириной в несколько сотых ангстрема) обнаруживает резкие максимумы. Так, для паров натрия коэффициент поглощения может быть изображен в виде кривой, показанной на рис. 28.14. При тщательно контролируемых условиях опыта удавалось наблюдать в спектре поглощения паров Na до 50 таких пар (дублетов), которые расположены тем ближе, чем короче длина волны.  [c.564]

Изложенные выше закономерности, установленные на опыте, показывают, что законы абсорбции света в основном определяются свойствами атома или молекулы, поглощающей свет, хотя действие окружающих молекул может значительно исказить результат. Особенно в случае жидких и твердых тел влияние окружения иногда радикально меняет абсорбирующую способность атома вследствие того, что под действием полей окружающих молекул поведение электронов, определяющих оптические свойства атомов, изменяется до неузнаваемости. Особенно разительно в этом отношении поведение металлов. Действительно, хорошо известно, что пары металлов, даже таких, как, например, серебро или натрий, представляют собой столь же хорошие изоляторы, как и пары (газы) других веществ, тогда как металлическое серебро или натрий являются наилучшими проводниками электричества. Таким образом, поведение наиболее слабо связанных с атомами электронов в изолированных атомах металлов и в конденсированном металле резко различно. В соответствии с этим металлический натрий не обнаруживает никаких признаков спектра поглощения, характерного для паров натрия и изображенного на рис. 28.14.  [c.568]


Необходимо, однако, отметить, что согласно закону Кирхгофа тело, сильнее поглощающее, должно и больше испускать только при условии, что сравнение производится при одинаковой температуре. Это условие соблюдено в описанном выше опыте с расписанным фарфором, отдельные части которого нагреты до одной температуры то же имеет место и в ряде других аналогичных опытов при накаливании платиновой пластинки, до половины покрытой платиновой чернью, черные части светятся гораздо ярче капля фосфорнокислого натрия на платиновой проволочке остается те м-иой, хотя проволочка ярко раскалена, ибо капля даже при высокой температуре остается прозрачной для видимых лучей, и т. д. Поэтому лишь кажущимся парадоксом является известный опыт, в котором в водородное пламя вводятся рядом куски извести и угля и известь оказывается гораздо более ярко раскаленной, чем уголь. Конечно, поглощательная, а следовательно, и испускательная способность угля гораздо больше, чем у извести для всех длин волн, и поэтому при равной температуре уголь будет светиться во всем спектральном интервале ярче, чем известь. Но в описанных условиях опыта температура угля оказывается гораздо ниже температуры извести. Причина лежит отчасти в химических процессах, сопровождающихся поглощением тепла, отчасти в том, что уголь именно в силу своей большой испускательной способности излучает много энергии во всем спектре, в том числе очень много и в инфракрасной области. Этот огромный непрерывный расход энергии и приводит к тому, что температура, до которой раскаляется уголь, оказывается значительно ниже, чем температура самого пламени или извести, не несущей таких больших потерь энергии, ибо ее испускательная способность селективна и, в частности, в инфракрасной части очень мала.  [c.691]

Еще большей селективностью излучения отличаются, например, пары натрия, значительная часть излучения которого (около 1/3) сконцентрирована в видимой области (две интенсивные желтые линии 589,0 и 589,6 нм). В соответствии с этим световая отдача излучения натрия может достигать 200 лм/Вт в лампах соответствующего устройства. Вообще свечение газов в силу их селективности отличается наибольшей экономичностью, но эта селективность является в то же время практическим недостатком, ибо благодаря ей спектр газовых источников состоит из отдельных линий или полос и сильно отличается от привычного для человеческого глаза белого света.  [c.709]

В заключение коротко остановимся на сравнении теоретических и экспериментальных данных. Оптические постоянные металла измеряются обычно в отраженном свете видимой области спектра. Значения постоянных, найденные для длины волны 5893 А (желтая Л-линия натрия), приведены в табл. 16.2.  [c.29]

Пламя получают с помощью обычной стеклодувной горелки с поддувом воздуха. Так как пламя горелки в видимой области спектра почти прозрачно, его подкрашивают, вводя в него какой-либо щелочной или щелочноземельный элемент, имеющий яркие линии в видимой части спектра. Для наблюдения обращения удобны желтые Д-линии натрия (589,0 и 589,6 нм), зеленые линии таллия (535,0 нм) и бария (553,Й нм) и красная линия лития (670,78 нм). Наиболее часто используют натрий, который вводят в пламя путем распыления водного раствора поваренной соли. Распылитель 11, устройство которого видно из рис. 95, включен в канал, подающий в горелку воздух. Пульверизатор распылителя  [c.258]

Схема уровней других щелочных металлов имеет аналогичную структуру. В качестве примера на рис. 66 дан вид спектра испускания атома натрия.  [c.200]

Спектр испускания атома натрия  [c.201]

Спектры других щелочных металлов. Мы рассмотрели более подробно лишь спектр лития. Спектр остальных щелочных металлов имеет аналогичную структуру. Необходимо лишь принять во внимание, какое состояние является основным. Например, у натрия основное состояние есть  [c.202]

В данном случае последнее правило отбора не играет роли. С помощью правил нетрудно выяснить возможные пере.ходы, которые для главной серии указаны стрелками на рис. 83. Видно, что всего возможно 10 различных переходов. Каждый из них приводит к излучению отдельной линии в спектре излучения. Таким образом, при помещении атома натрия в магнитное поле каждый дублет главной линии серии излучения натрия расщепится на 10 линий. Соответствующим образом на большее число линий расщепятся и другие линии в спектре излучения. Явление расщепления линий спектра излучения при помещении атома в слабое внешнее магнитное поле называется аномальным или сложным эффектом Зеемана. Слово аномальный имеет историческое происхождение. Первоначально было изучено и понято расщепление линий в спектре излучения некоторых атомов на три линии. Это расщепление было названо нормальным, хотя в действительности оно  [c.251]

Расщепление линий излучения. Пользуясь правилами отбора (45.1а), (45.1г), можно найти разрешенные переходы. При этом особенно необходимо принять во внимание правило (45.1 г), т. е. постоянство спинового квантового числа. На рис. 85 стрелками обозначены возможные переходы для главной серии атома натрия. Всего излучается шесть линий. Поскольку расщепление, обусловленное ориентировкой спина во внешнем магнитном поле, в Р-состоянии и в S-состоянии одно и то же, эти шесть линий попарно сливаются в три и в спектре излучения наблюдается триплет. Расщепление нетрудно рассчитать по формуле (46.1), которую удобно представить в виде  [c.254]

Рис. 2.2. Энергетический спектр ядра натрия. Рис. 2.2. <a href="/info/32454">Энергетический спектр</a> ядра натрия.

S-состояний натрия и сходных с ним ионов. Как видно, постоянство сохраняется не очень точно, но и того постоянства, которое имеет место, вполне достаточно для выяснения общих закономерностей изменения спектров при переходе от нейтральных атомов к сходным с ним ионам, о которых шла речь в S 10. Кроме того, как  [c.136]

Простой характер спектра натрия, как мы видели, можно объяснить, если предположить, что его наиболее внешний электрон движется на сравнительно больших расстояниях от остальных электронов, составляющих симметричный и сравнительно компактный атомный остов. Следовательно, восьми электронам атомного остова натрия, не входящим в состав одноквантовой оболочки, приходится приписать п — 2. Эти восемь электронов составляют двухквантовую оболочку, отличающуюся симметрией. Естественно предположить, что заполнение двухквантовой оболочки электронами, начиная  [c.52]

Рис. 5. ИК-спектры натрий-аммоний пероксониобата (Na lb= 1 1) на различных стадиях разложения Рис. 5. ИК-спектры натрий-аммоний пероксониобата (Na lb= 1 1) на различных стадиях разложения
Принцип метода резонансного фильтра состоит в следующем рассеянный свет возбуждается резонансной линией спектра (в установке Вукса резонансными линиями спектра натрия, в уста-  [c.178]

Заканчивая этот краткий обзор различных электромагнитных волн, следует отметить разницу между физической оптикой, изучению которой посвящена эта книга, и физиологической оптикой, не рассматриваемой здесь. В некоторых случаях различие между ними очевидно если ввести в дугу соль натрия и разложить ее излучение в спектр призмой или дифракционной решеткой, то мы увидим на экране ярко-желтый дублет. То, что длины волн этих линий равны 5890—5896 А, нетрудно установить измерениями, целиком относящимися к методам физической оптики. Но вопрос о том, почему эти линии кажутся нам желтыми, нельзя решить в рамках этой науки, и он относится к физиологической оптике. Конечно, проведение столь четкой границы между ними дЕ1леко не всегда возможно, и иногда трудно решить, имеем ли мы, например, дело с истинной интерференционной картиной или с кажущимися глазу полосами, возникновение которых связано с явлением контраста, и т. д. Некоторые интересные данные по физиологической оптике содержатся в лекциях Р.Фейнмана, который счел возможным сочетать изложение этих вопросов с основами физической и геометрической оптики.  [c.14]

Установив в опытах над магнитным вращением плоскости поляризации света связь между магнитными и оптическими явлениями, Фарадей предпринял также попытку воздействовать магнитным полем на спектральные линии. Один из последних его опытов (1862 г.) состоял в наблюдении спектра паров натрия, помещенных между полюсами, электромагнита, при включении и выключении поля. Отсутствие какого бы то ни было эффекта объясняется, как мы уже знаем, недостаточностью технических средств, которыми располагал Фарадей (малая разрещающая способность спектрального аппарата при слабых магнитных полях, применявшихся им).  [c.621]

Эти результаты, получеггные Шоттки [182], использовались Симоном [183] для объяснения отклонений теплоемкости лития, натрия, кремния, серого олова и алмаза от формулы Дебая (5.6). Однако теплоемкость этих веществ меняется с температурой монотонно, любой же монотонный ход теплоемкости, как отмечал Блекмен [39], может быть получен из соответствующего непараболического спектра решетки. Поэтому рассмотренную выше схему энергетических уровней следует использовать для объяснения поведения теплоемкости только при наличии максимумов теплоемкости. Так, нанример, для некоторых редкоземельных элементов [99] подобные максимумы связываются с переходами между 4/-уровнями, расщепленными внутрикристаллическим нолем (см. п. 20).  [c.366]

Эталонные спектры для градуировки призмы Na l. Исполь-зуемый в задаче ИК-спектрометр ИКС-21 с призмой из хлористого натрия имеет рабочий интервал от 2 до 15 мкм (5000— 680 см ). Наиболее выгодной областью его применения с точки зрения наилучшей дисперсии является область 2000—660 см . Для градуировки прибора в такой широкой области спектра в качестве нормалей I и II классов могут быть использованы полосы поглощения атмосферной влаги (рис. 52), аммиака (рис. 53) и атмосферного углекислого газа (рис. 54). Все значения волновых чисел (в СМ ) на этих и последующих рисунках приведены к вакууму. Градуировка области выше 2000 см может быть выполнена по данным рис. 55—58 (нормали II и III классов). Для градуировки призмы КаС1 могут быть также использованы слабые линии ртути 5074,5 4444,6 и 4299,1 см и линия излучения гелия 4856,1 см .  [c.147]

Из квантовой теории следует (гл. I, 3, п. 4), что ядро, как и атом (и вообш,е всякая пространственно ограниченная система), имеет не непрерывный, а дискретный энергетический спектр. Энергетические уровни ядер принято изображать так, как это сделано на рис. 2.2, где приведено несколько низших уровней ядра натрия. Каждой горизонтальной черте соответствует энергетический уровень, энергия которого, отсчитанная от энергии основного состояния, указана слева (в кэВ). Нижней черте соответствует основное состояние. Из этого рисунка, например, видно, что для того, чтобы перевести ядро натрия в возбужденное состояние, ему необходимо передать энергию не менее = 440 кэВ. И действительно, если бомбардировать натриевую мишень а-частицами, то при низких энергиях происходят только упругие столкновения а-частиц с ядрами, а при энергиях, превышающих 440 кэВ, появляются и неупругие столкновения, при которых вылетающие частицы имеют энергию на меньше начальной.  [c.32]

На рис. 9.13 приведена схема типичного сцинтилляционного счетчика, в котором сцинтиллятором служит кристалл иодистого натрия Nal. Регистрируемая ионизирующая частица попадает в кристалл и тормозится в нем. Как и во всяком веществе, энергия частицы при торможении расходуется на ионизацию и возбуждение электронов в кристалле. В сцинтиллирующем кристалле энергия возбуждения частично выделяется в виде вспышки видимого света. Механизм образования вспышки сложен. Нетривиален также вопрос о том, почему сцинтиллятор может быть прозрачен по отношению к своему собственному излучению (казалось бы, спектр  [c.500]

Точно также изучение спектра KI и сходных с ним ионов показывает, что в нормальном состоянии самый внешний электрон калия находится на орбите с п 4. В промежуточных элементах, начиная с натрия и кончая аргоном, идет заполнение электронами трехквантовой оболочки. Восемь трехквантовых электронов аргона составляют симметричную группу и обусловливают сходство его физико-химических свойств с неоном.  [c.53]

С 11-го элемента периодической системы — натрия — начинается заполнение трехквантовой оболочки. Таким образом, этот элемент имеет вне замкнутых оболочек один электрон, что и обусловливает дублетный характер его спектра, аналогичный спектру лития, а также сходство с литием в остальных физико-химических свойствах. Следующий элемент—магний — имеет вне замкнутых оболочек два электрона 3s, что делает его сходным с бериллием. В последующих элементах идет дальнейшее заполнение трехквантовой оболочки. Так как по принципу Паули в состояниях Зр не может располагаться больше 6 электронов, то заполнение этих состояний заканчивается на 18-м элементе периодической системы — аргоне. Таким образом, аргон имеет вне замкнутых одноквантовой и двухквантовой оболочек еще 8 электронов два Зз-электрона и шесть Зр-электронов. В согласии со сказанным выше, эти 8 электронов приводят к единственному результирующему состоянию и, следовательно, обусловливают полное сходство спектра и прочих физико-химических свойств аргона со свойствами неона. Однако между неоном и аргоном, с точки зрения принципа Паули, имеется существенная разница неоном заканчивалось построение двухквантовой оболочки, в то время как аргоном заканчивается лишь заполнение групп эквивалентных 3s- и Зр- электронов. Согласно табл. 57 с главным квантовым числом л = 3 могут существовать еще 10 электронов с / =2, т. е. в состояниях 3d. Таким образом, аргоном не заканчивается построение трехквантовой оболочки.  [c.231]



Смотреть страницы где упоминается термин Спектр натрия : [c.726]    [c.139]    [c.720]    [c.257]    [c.654]    [c.450]    [c.135]    [c.323]    [c.416]    [c.193]    [c.257]    [c.202]    [c.52]    [c.224]   
Оптические спектры атомов (1963) -- [ c.62 , c.64 , c.134 ]



ПОИСК



Натрий

Спектры ионов, сходных с гелием натрием



© 2025 Mash-xxl.info Реклама на сайте