Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фильтр резонансный

Для акустического фильтра резонансная угловая частота будет  [c.374]

Объемные (полые) резонаторы применяются для создания СВЧ фильтров, резонансных контуров, стабилизаторов частоты, волномеров и делятся на прямоугольные, цилиндрические, коаксиальные, сложной формы.  [c.662]

Избыточный резонансный интеграл LkT —оо Метод без кадмиевого фильтра  [c.1122]

При рассмотрении колебательных систем мы должны уделить особое внимание системам с малым затуханием, в которых величина энергии, рассеиваемой за период (или почти период) колебаний. мала по сравнению с общим запасом энергии, связанным с исследуемым движением. В подобных системах наиболее ярко проявляются их колебательные свойства. В большом числе практических применений мы встречаемся с высокодобротными колебательными системами. Можно упомянуть резонансные элементы входных цепей радиоприемных устройств, колебательные контуры, входящие в состав полосовых фильтров, маятник или баланс в часовых механизмах, колебательные элементы в частотомерах и спектр-анализаторах и др.  [c.14]


Упругие прокладки работают аналогично акустическому фильтру. На резонансной частоте будут наблюдаться понижения виброизолирующей способности амортизаторов, ограничиваемые величиной диссипативного параметра системы. Чем выше частота по сравнению с f p, тем эффективнее влияние прокладок. Граничная частота находится из соотношения  [c.121]

Если измерения проводятся в условиях помехи, соизмеримой по уровню с возбуждаемым сигналом, то сигнал с акселерометра перед записью подается на узкополосный следящий фильтр. Схема измерений показана на рис. 65, где 1 — исследуемый объект 2 — датчик силы 3 — электродинамический вибратор 4 — акселерометр 5 — усилитель заряда 6 — усилитель мощности 7 — измерительная установка для автоматического узкополосного синхронного анализа 8 — следящий умножитель частоты 9 — фазовращатель 79, 15 — электронные осциллографы типа С1-55 и С1-1 11 — цифровой фазометр 12 — самописец 13 — генератор с плавным изменением частоты 14 — генератор с дискретным изменением частоты. Полученные характеристики служат для приближенного определения резонансных частот и пучностей соответствующих форм колебаний. Для более детальных измерений  [c.148]

Для получения исходных данных, необходимых для применения численного разложения в ряды Фурье, использовался метод импульсов. К патрубку прикладывался импульс внешней силы, причем одновременно замерялись величина этого импульса с помощью динамометрического датчика и динамическая реакция системы в этой же точке с помощью акселерометра. Входной и выходной сигналы затем пропускались через фильтры, преобразовывались в цифровую форму и использовались для численного преобразования Фурье, в результате чего были получены зависимости амплитуд и фаз от частоты колебаний. Затем вычислялось отношение динамической реакции к возбуждающей колебания силе и получали зависимость податливости от частоты колебаний, т. е. динамическую реакцию. Типичная зависимость податливости от частоты колебаний в точке приложения возмущающей силы показана на рис. 6.73. Вследствие большого числа наблюдаемых форм колебаний в дальнейшем были рассмотрены лишь типичные резонансные частоты колебаний и соответствующие им формы. Этими частотами были 52,7 84 207 и 339,8 Гц. Формы колебаний получались методом импульсов путем построения графиков передаточных функций для различных точек выхлопной трубы. Известно, что построе-  [c.359]


Когда требования к точности измерения уравновешивания еще не были особенно высокими, а следовательно и не было необходимости в сильной фильтрации рабочего сигнала от помех, применялись фильтры с добротностью 8—12. При этом случайные изменения скорости вращения балансируемого ротора не вызывали ощутимых амплитудных и фазовых ошибок. В связи с этим определение угловой координаты неуравновешенности при применении резонансного фильтра оказывалось возможным после фильтрации сигнала, как это показано на блок-схеме на фиг. 19. Выбор работы механической части в зарезонансной зоне d/ Oq >3 практически гарантировал от фазовых ошибок, а измерение амплитуды.при применении скоростных датчиков имело погрешность, прямо пропорциональную изменению скорости вращения ротора. Так как изменение этой угловой скорости при правильно подобранной мощности асинхронного электродвигателя укладывается обычно в 2—3%, то и амплитудными ошибками вполне можно пренебречь. Погрешности электрической части схемы, если 34  [c.34]

Фильтры помех для балансировочных машин могут быть выполнены с использованием электронных схем, содержащих избирательные цепочки из сопротивлений и емкостей или резонансных механических систем, составленных из пружин и масс.  [c.342]

Вопрос о фильтрации помех в процессе уравновешивания роторов раньше не принимался во внимание, так как балансировка проводилась главным образом па резонансных машинах, где фильтрация помех осуществляется автоматически. В связи с этим вопрос о фильтрации помех даже до сих пор не рассмотрен в технической литературе применительно к уравновешиванию роторов на балансировочных машинах. Кроме того, помехи, возникающие от подшипников качения, были недостаточно теоретически и практически изучены, и поэтому до настоящего времени было трудно предъявить обоснованные технические требования для разработки соответствующих фильтрующих устройств, необходимых для повышения точности уравновешивания роторов.  [c.336]

Первое решение приемлемо лишь для грубых балансировок (хк 0,5 мк), так как даже для корреляционного (синхронного) фильтра эквивалентная добротность (в принципе неограниченная [7]) из-за погрешностей технической реализации пере-множителя и усреднителя Q 200 -ь 300, а для резонансного (активного) фильтра она лежит в пределах 50—100 причем для основной (случайной в полосе частот фильтра) части внешней помехи каскадное соединение фильтров не дает эффекта второй фильтр каскада, как это следует из выражения (28), уже не увеличивает отношение сигнал/помеха.  [c.434]

Блок выделения и усиления сигнала дисбаланса, т. е. блок измерительного тракта, содержит датчик дисбаланса Д, частотно-избирательный усилитель Ф (резонансный фильтр), дополнительные усилители У1 и У2, а также узлы автоматической регулировки усиления ЛРУ, сравнения текущей величины дисбаланса с заданным минимальным уровнем СС и формирователь сигнала места дисбаланса УФ (рис. 1).  [c.440]

О. р. е металлич. стенками применяют в технике СВЧ (10 10ч Гц) как частотные фильтры и резонансные колебат. системы генераторов, усилителей, приёмных устройств, анализаторов спектра и др. Начиная с частот 10 Гц О. р. при работе на первой моде становятся излишне миниатюрными (I — к — 1 мм), к тому же их добротность ухудшается по закону поскольку толщина скин-слоя уменьшается пропорц.  [c.398]

В описанных принципах построения устройств формирования применение перестраиваемых полосовых фильтров позволяет максимально снизить требования к ирямоугольности их амплитудно-частотных характеристик. Это связано с тем, что, с одной стороны, техническая реализация перестраиваемых в широком диапазоне частот полосовых фильтров высокого порядка (п > 2) затруднена, с другой стороны, — отсутствует необходимость использовать в качестве полосовых фильтров резонансные звенья выше второго порядка ввиду того, что любая сложная АЧХ фильтра может быть получена соответствующей настройкой нескольких простейших, перестраиваемых по всем параметрам полосовых фильтров.  [c.302]

У низкочастотных кварцев резонансный интервал невелик и зачастую недостаточен для изготовлени.ч фильтров. Резонансный интервал можно увеличить, если подключить параллельно кварцу катушку, индуктивность которой можно определить следующим образом. Вначале по формуле (1.3) определяют емкость параллельного конденсатора с при этом получается отрицательное значение С .Вычислив по формуле (1.2) реактивное сопротивление этого отрицательного конденсатора (который равнозначен катушке индуктивности), можно определить индуктивность, имеющую такое же реактивное сопротивление на частоге кварца. Катушка должна иметь возможно меньшие потери.  [c.24]


Следовательно, связанные осцилляторы являются полосовым фильтром — ослабляют влияние внешней силы частотой лежащей вне интервала (0J2, (Oi) [62]. Отметим чрезвычайно важный эффект сужения резонансной кривой. Определим ширину резонансной кривой С ((о) как интервал частот Л(о = (й—(о , в пределах которого значение амплитуды не опускается ниже величины 1/V2 С (о)). Для изолированного осциллятора A(Oti =v- Однако при возбуждении двух мод ширина резонансной кривой Дсоп = = 7/2.  [c.166]

Г Эпикадмиевый избыточный резонансный интеграл Метод кадмиевого фильтра  [c.1122]

Частоту колебаний генератора резонансного толщиномера автоматически модулируют в диапазоне двух-трех октав, На резонансных частотах изделия нагрузка генератора резко изменяется, что вызывает падение его напрян<ения. Частотным фильтром эти изменения отделяют от других изменений напряжения генератора. В результате резонансы, соответствующие различным значениям п, имеют вид пиков на пропорциональной частоте линии развертки электронно-лучевой трубки. Толихину измеряют по частоте пика с известным п или по интервалу частот между пиками.  [c.128]

Другой пример гребенчатой частотной характеристики — низкочастотный отклик ограниченной механической структуры с небольшим затуханием. Обычно первые резонансы таких структур отстоят друг от друга по оси частот на расстояния, значительно превышающие ширину резонансных пиков. Поэтому на низких частотах в их частотных характеристиках можно наблюдать ряд ярко выраженных резонансных подъемов, чередующихся глубокими спадами (рис. 3.20). В этом диапазоне частотная характеристика структуры может быть достаточно точно аппроксимирована частотной характеристикой гребенчатого фильтра. На более высоких частотах этого делать нельзя, так -как нри неизмен-  [c.106]

Для коррекции АЧХ усилителя 7 мощности и нагруженного вибровозбудителя 8 в устройство введеп имитатор 13 случайной вибрации, содержащий фильтры с широкой полосой перестройки, с помощью которых выравнивается энергетическая характеристика и АЧХ. В имитаторе 13 предусмотрен регулируемый усилитель, который при превышении заранее установленного уровня вибрации в экстремальном ограничителе 16 по какой-либо координате объекта уменьшает уровень возбуждения, поступае-мого на вибровозбудитель 8, или регулирует фазовые соотношения между сигналами. При многофункциональных испытаниях к одному входу второго сумматора через блок 6 формпро-вания сигнала подключен генератор 1 шума, а к другому входу второго сумматора через второй коммутатор — генератор 14 треугольных пмпульсов. Сигналы с генератора 1 шума и генератора 14 формируют виброударный импульс на выходе второго сумматора 17, отклик объекта 9, на воздействие которого также индицируется индикатором 15. Экстремальный ограничитель 16 п в этом случае не позволяет дорогостоящему объекту 9 выйти пз строя, ограничивая резонансные колебания его отдельных элементов.  [c.327]

Прецизионная роторная система (ПРС), составной частью которой является HKG, — типичный и широко распространенный объект ответственного назначения. Его основным элементом является быстровращающийся сбалансированный жесткий ротор, установленный в шарикоподшипниковых опорах и герметизированном корпусе. Качество сборки определяется пространственной изотропией жесткостей с у). Последние при размеш ении объекта в ориентированном вибрационном поле начинают коррелировать с информативными резонансными частотами (ш , <о ) и добротностью ф. Оценка технического состояния реализуется на дихотомическом уровне ( годен—негоден ) по измеренному значению информативной частоты и добротности. Задача в цепом осложняется нелинейностью системы на основном резонансе, зашумленностью и недоступностью для непосредственного измерения (наблюдения) всех компонент вектора фазовых координат. Для решения задачи оценивания уиругодиссинативных связей ПРС достаточно эффективным оказался метод тестовой вибродиагностики, предложенный в [3] и основанный на комбинации методов идентификации и диагностического подхода. В качестве экспериментальной информации используются отклонения от номинальных значений параметров введением в рассмотрение функциональной модели. На этапе обучения составляется математическая модель (ММ), идентифицируется, одновременно предлагается функциональная модель (ФМ). В качестве функциональной модели используется линейный цифровой фильтр с предварительным нелинейным безынерционным коэффициентом (модель Гаммерштейна). Уравнения связи записываются так, что они разрешены непосредственно относительно контролируемых параметров — коэффициентов математической мо-  [c.138]

Приведенные примеры характерны тем, что в обоих случаях элементы, возбуждающие колебания (зубчатая муфта между турбиной и редуктором и зубчатая пара второй ступени), и элементы, на которых развиваются интенсивные резонансные колебания (шестерня II ступени и ротор турбины), разделены торсионом, который обычно рассматривается как слабая связь, играющая роль фильтра, изолирующего обе части системы, расположенные по разные стороны от торсиона. Порядок обнаруженных собственных частот показывает, что они лежат значительно выше области частот, определяемых образованием узлов на участках соединительных валов, и обусловливается, по всей вероятности, податливостями участков, включающих зацепления. Следует отметить, что в описываемом случае исследовались лишь крутильные колебания, возникающие в системе. Обнаруженные при экспериментах режимы повышенных вибраций и достаточно четко вырисовывающиеся резонансные кривые еще раз подтверж дают актуальность расчетного предсказания собственных резонансных частот системы и построения амплитудно-частотных характеристик колебаний рассматриваемых систем.  [c.89]

Перемножение полезного и опорного сигналов с амплитудами ЛД/) и Аоп соответственно можно осуществить с помощью фазового детектора (ФД), преимущества которого по сравнению с резонансными п полосовыми усилителями известны и особенно ощутимы при непостоянстве скорости вращения балансируемого ротора. Для автоматизации действия схемы может быть применена замкнутая следящая система, в которой сигналом ошибки служит величина на выходе ФД. В этом случае при технической реализации необходимы фильтр ннжних частот (ФНЧ), буферный усилитель (БУ) и управляющий элемент (УЭ), который служит для того, чтобы  [c.49]


Модель односвязной САУУ включает модель исправления [1], резонансный фильтр на двух закольцованных интеграторах, фазосдвигающие цепи и цепь обратной связи.  [c.304]

Поскольку для определения математического ожидания и дисперсии косинуса фазовой ошибки необ.ходимо знание плотности распределения фазы смеси щ(<р), для ее измерения был создан исследовательский стенд. Кро.ме того, была создана оригинальная аппаратура для непосредственной регистрации числовых характеристик фазы — и Измерение плотности распределения клиппированной смеси осуществлено на 256-канальном анализаторе типа АИ-256-1, имеющем наряду с режимом амплитудного анализа режим анализа временных интервалов. Так как анализатор рассчитан на короткие (с передним фронтом 0,2—4 мксек) импульсы, была разработана специальная приставка, обеспечивающая необходимые параметры входных сигналов. Узкополосные случайные помехи образуются путем пропускания сигнала генератора шумов Г2-12 через фильтры с высокой добротностью и изменяемой резонансной частотой. Для анализа была принята. модель в виде суммы А2 векторов сигнала Ас и помехи Ап, вращающи.хся со скоростями 05с И о5 = К(Ос соответствеино. При этом условие клиппирования предполагает измерение фазовой ошибки между Ас и Л л в момент, когда вектор А пересекает мни.мую ось слева направо (рис. 3). Учитывая равномерность распределения фазы по.мехи е  [c.306]

Анализ характеристик, полученных на станке модели ЭЗ-27, показал, что сигнал на выходе резонансного фильтра представляет собой смесь полезного сигнала с набором квазигармониче-ских помех на частотах сейсмического датчика дисбаланса, колебательной системы ротора, виброизоляции станка и настройки фильтра.  [c.311]

Дискретное (узкополосное) воздействие. Помимо отклика на широкополосный шум спектрограммы рабочего колеса содержат также узкополосные всплески, являющиеся реакцией на действие дискретных (близких к монога рмоиическим) составляющих. Современная аппаратура, обладающая высокой разрешающей способностью фильтрующих устройств, позволяет выделять узкополосные всплески из отклика на шум. Ширина узкополосных воплес-ков, как правило, существенно меньше ширины. резонансных пиков.  [c.195]

В прошлом частотный 3. а. проводили с помощью резонаторов акустических, напр, резопаторов Гельмгольца. Набор таких резонаторов с разл. резонансными частотами позволяет проводить частотный 3. а., наблюдая, какие из резонаторов отк,пикаются на звук и с какой громкостью. В настоящее время 3. а. выполняют после преобразования звукового сигнала в электрический с номощью микрофона (в воздухе) или гидрофона (в воде). Применяют либо параллельный, либо последовательный 3. а. В первом случае электрич. сигнал пропускают через набор полосных фильтров с шириной Д/п, где п — номер фильтра, и получают частотный спектр. Наиб, употребительны анализаторы с постоянной относит, шириной полосы Д/п//ср П (/ср — ср. частота фильтра), равной 1, Vs или /в октавы. Совокупность напряжений на выходе фильтров представляет частотный спектр сигнала. В случае нестационарных сигналов спектр характеризуется накопленными за нек-рый интервал времени Т среднеквадратичными напряжениями на выходе фильтров.  [c.71]

ПОЛОСА ПРОПУСКАНИЯ — область частот, в к-рой колебания, проходящие через радиотехн., акустич., оптич. и др. устройства, изменяют свою амплитуду и др. параметры в установленных границах. Для электрич. цепей в пределах П. п, сопротивление цепи (в зависимости от её типа) близко к своему макс, или мин. значению (наир., параллельно или последовательно включённый колебат. контур). П. и.— важная характеристика резонансных систем, фильтров и др. В радиотехнике принято оценивать ширину П. п. по определ. уровню (обычно 1/1 2) амплитудно-частотной характеристики цепи относительно её макс, значения. П. п.  [c.28]

П. п. характеризуются большой шириной частотной полосы пропускания, превышающей в отд. случаях 100% от резонансной частоты. Э ективиость работы П. п. определяется в осн. электрич. потерями, саязан-иыми с наличием электрич. проводимости пьезополупроводников, и потерями, обусловленными отражением волновых нолей от П. п. Используются П. п. и в пассивных и активных УЗ-линиях задержки, в пьезоэлектрич. усилителях, фильтрах, а также при исследованиях распространения гиперзвука в веществе, в частности в исследовании электрон-фононного взаимодействия.  [c.187]

П. р. широко используются в радиотехнике, электронике, электроакустике и др. в качестве фильтров, резонаторов в задающих генераторах, резонансных пьезопреобразователей и пьезотрансформаторов. Пьезоэлектриком в П. р. служит кристалл кварца или пьезо-керамика с малыми потерями. Кварцевые резонаторы применяются в качестве резонансных контуров генераторов злектрич. ВЧ-колебаний. Высокая добротность (10 — 10 ) кварцевого резонатора определяет малый уход частоты генератора от её номинального значения 1(10 — Ю )%] при изменении окружающей темп-ры, давления и влажности. Разработаны микроминиатюрные кварцевые резонаторы на частоты колебаний 30 кГц — 8,4 МГц, нашедшие применение в электронных часах, системах электронного зажигания двигателей внутр. сгорания и др. П. р. на основе кварца используются в акустоэлектронных устройствах фильтрации и обработки сигналов монолитных ньезо-электрич. фильтрах, а также фильтрах и резонаторах на поверхностных акустических волнах (ПАВ). Оси. достоинство резонаторов на ПАВ — возможность использования в устройствах стабилизации частоты и узкополосной фильтрации в диапазоне частот 100— 1500 МГц. Пьезоэлектрич. фильтры из пьезокерамики, как правила, многозвенные, изготавливают на частоты 1 кГц — 10 МГц. При этом на частотах до 3,5 кГц используют биморфные пьезоэлементы, когда П. р. совершает резонансные колебания изгиба по грани в  [c.192]

Резонансное нарастание колебаний происходит во всех частях колебат. системы на одних я тех же частотах (рис. 5), равных частотам собств. колебаний системы. Нормальные частоты не совпадают с парциальными, т. е. с собств. частотами осцилляторов, входящих в совокупную систему. Если частота сторовней силы равна одной из парциальных частот, то в совокупной системе Р. не наступает. Напротив, в атом случае амплитуды вынужденных колебаний достигают минимума, аналогично случаю антирезонанса в системе с одной степенью Свободы. Возможность подавления колебаний, частота к-рык равна одной из парциальных, используется в злектрнч. фильтрах я успокоителях механик, колебаний.  [c.310]


Смотреть страницы где упоминается термин Фильтр резонансный : [c.213]    [c.23]    [c.561]    [c.73]    [c.1122]    [c.101]    [c.195]    [c.16]    [c.38]    [c.41]    [c.44]    [c.359]    [c.310]    [c.342]    [c.120]    [c.152]    [c.9]    [c.191]    [c.231]   
Пьезоэлектрические резонаторы на объемных и поверхностных акустических волнах (1990) -- [ c.397 ]



ПОИСК



Резонансные

Синтез резонансного фильтра



© 2025 Mash-xxl.info Реклама на сайте