Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Титан и его сплавы проволока

Титан и его сплавы сваривают в защитной атмосфере аргона высшего сорта. При этом дополнительно защищают струями / и 2 аргона корень шва и еще не остывший до температуры 350 °С участок шва 3 (рис. 5.50). Перед сваркой проволоку и основной металл дегазируют путем отжига в вакууме. Допустимое количество газов в швах составляет Н. < 0,01 %, О. < 0,1 % и N2 < 0,05 %. При большем содержании газов снижается пластичность металла сварных соединений, кроме того, титановые сплавы становятся склонными к образованию холодных трещин. Ответственные узлы сваривают в камерах с контролируемой аргонной атмосферой, в том числе и обитаемых, в которых сварщики работают в скафандрах.  [c.237]


Титан и его сплавы используют в возрастающем масштабе в промышленности благодаря преимуществу их специальных характеристик. Такие свойства, как относительно высокая прочность, превосходная общая коррозионная стойкость и плотность, промежуточная между алюминием и сталью, делают титан перспективным конструкционным материалом. Прогресс в производстве титана способствовал получению различных полуфабрикатов из титановых сплавов от проволоки и фольги до крупногабаритных заготовок. Возможно также производство деталей методами литья и порошковой металлургии. Большинство технологических операций на титане совершаются при высоких температурах. Вследствие большой реактивности сплавов титана и тенденции к загрязнению поверхности необходимо соблюдение мер предосторожности при его производстве. Однако реактивность, особенно способность титана растворять собственные окислы, может быть использована в производстве сложных деталей методами диффузионной сварки.  [c.413]

Титан в нагретом и расплавленном состояниях становится весьма активным. Он энергично поглощает (растворяет) кислород, азот, водород и другие газы. При насыщении этими газами титан и его сплавы снижают сопротивляемость образованию холодных трещин при сварке. Эта опасность возрастает с появлением концентратов напряжений в виде пор, непроваров и т. д. Чтобы предотвратить хрупкость, свариваемые детали и электродную проволоку перед сваркой тщательно очищают и подвергают дегазации.  [c.257]

Пр.ч температурах выше 500°С титан и его сплавы легко окисляются и поглощают водород, который вызывает охрупчивание (водородная хрупкость). Технический титан хорошо обрабатывается под давлением, сваривается, но обработка резанием затруднена. Металлургической промышленностью он изготовлялся в виде листов, труб, прутков, проволоки и других полуфабрикатов.  [c.353]

Из всех тугоплавких материалов самое щирокое применение в промышленности получил титан и его сплавы. Сварку титана и его сплавов проводят в атмосфере защитных газов с дополнительной газовой защитой корня щва и еще не остывшего участка шва до 400° С. Перед сваркой проволоку подвергают вакуумному отжигу. Для сварки титана больших толщин применяют автоматическую сварку под специальным бескислородным флюсом (АНТ-1 ПНТ-3 и т. д.). Защита обратной стороны осуществляется применением остающейся или флюсомедной подкладки или флюсовой подушки. При этом используют постоянный ток обратной полярности. Кроме того, для сварки титана и его сплавов можно применять и другие способы сварки вакуумно-дуговую, электроннолучевую, диффузионную и т, п.  [c.681]


Титан и его сплавы можно обрабатывать давлением всеми известными способами их можно ковать, прокатывать, волочить проволоку, штамповать в холодном и нагретом состояниях. При больших повторных деформациях и после окончания обработки 10  [c.10]

Титан и его сплавы не склонны к образованию кристаллизационных (горячих) трещин в металле шва. Наиболее распространенными дефектами являются поры и холодные трещины. Поры в сварных соединениях чаще всего располагаются в виде цепочки по зоне сплавления. Они снижают статическую и динамическую прочность соединений. Образование пор может быть связано с попаданием водорода в шов вместе с адсорбированной влагой на присадочной проволоке, флюсе, кромках свариваемых изделий или из атмосферы при нарушении защиты. Для получения беспористых швов необходимо обеспечить требуемую чистоту основного металла и сварочных материалов, сварку  [c.355]

Титан и его сплавы можно сваривать с помощью автоматов под бескислородным тугоплавким флюсом АН-Т на переменном и постоянном токе электродной проволокой из титана.  [c.274]

Автоматическая сварка титана под флюсом выполняется постоянным током обратной полярности. В отличие от стали титан обладает большим электросопротивлением, поэтому сваривать его необходимо с малым и не меняющимся в процессе сварки вылетом электрода. При диаметре проволоки 2—2,5 мм вылет должен составлять не более 14 мм, при диаметре 3—4 мм—17 мм, а при диаметре 5 мм — 20 мм. При большем вылете проволока перегревается, насыщается азотом и кислородом воздуха, вследствие чего нарушается устойчивость процесса сварки, ухудшается формирование шва и происходит насыщение шва азотом и кислородом воздуха, которые ухудшают механические и коррозионные свойства его. При автоматической сварке титана и его сплавов пользуются специальным мундштуком (рис. 101), чтобы в процессе сварки дуга не прорвалась сквозь слой флюса из-за недостаточной его высоты.  [c.197]

Технический титан и некоторые его сплавы сваривают проволокой из нелегированного титана. При сварке высокопрочных двухфазных сплавов титана этой проволокой содержание легирующих элементов в металле шва становится недостаточным, что в ряде  [c.196]

Для получения повышенной прочности, износоустойчивости, коррозионной стойкости и многих других специальных свойств металла шва его необходимо легировать марганцем, кремнием, вольфрамом, молибденом, хромом, никелем, ниобием, бором, титаном и другими элементами. Легировать металл шва можно через проволоку или через покрытие. Возможно одновременное использование обоих способов легирования. Наиболее стабильные химический состав, механические и другие свойства металла шва (особенно при сварке и наплавке высоколегированных сплавов) получаются при легировании через проволоку.  [c.306]

Технический титан используется для изготовления химических и пищевых емкостей, а как конструкционный материал — в криогенной технике, в восстановительной хирургии и т.д. Его поставляют в виде листов, труб, проволоки и других полуфабрикатов. Технический титан хорошо обрабатывается давлением, сваривается дуговой сваркой в атмосфере защитных газов и контактной сваркой, но плохо обрабатывается резанием. Карбид титана, обладающий высокой твердостью, входит в состав твердых сплавов, применяемых для изготовления режущих инструментов. Губчатый титан широко используется в вакуумной технике. Оксид титана применяется в лакокрасочном производстве. Ограничивает повсеместное использование титана его очень высокая стоимость.  [c.195]

Благодаря своим замечательным свойствам титан и его сплавы нашли широкое применение в самолето-, ракето- и судостроении. Из титана и его сплавов изготовляют полуфабрикаты листы, трубы, прутки и проволоку. Двуокись титана применяют при производстве белил и эмалей.  [c.252]

Высокая химическая активность в сочетании с низкой теплопроводностью, высоким электросопротивлением и температурой плавления, склонность к росту зерна в околошовной зоне определяют особенности сварки титана и его сплавов. Большая химическая активность титана при высоких температурах по отношению к азоту, кислороду и водороду затрудняет его сварку. Необходимым условием для получения качественного соединения при сварке титана плавлением является полная двухсторонняя защита от взаимодействия с воздухом не только расплавленного металла, но и нагретого выше 600°С основного металла и шва. При нагреве до высоких температур титан склонен к росту зерна-. Для устранения этого сварку следует выполнять при минимально возможной погонной энергии. Вследствие загрязнения металла сварного шва газами понижается его пластичность, что приводит к образованию холодных трещин. Загрязнение металла шва водородом можно предупредить, применяя электродную или присадочную проволоку, предварительно подвергнутую вакуумному отжигу. Содержание водорода в такой проволоке не превышает 0,004—0,006%. Большое влияние на качество сварного соединения оказывает состояние поверхности кромок и присадочного металла. Для удаления окиснонитридной пленки, образующейся после термообработки, ковки, штамповки, используют опеско-струивание и последующее травление в смеси солей с кислотами или щелочами.  [c.146]


При автоматической сварке алюминия марок АВ1 (99,85% А1) и АВ2 (99,9% А1) в сварных швах могут появиться трещины. Иногда их на поверхности не наблюдается, но они обнаруживаются при макроисследовании. Одним из возможных способов уменьшения склонности алюминия и его сплавов к образованию горячих трещин является измельчение зерна. Последнее достигается модификацией металла шва. Лучшим модификатором является титан, который вводится в сварочную ванну в виде лигатуры, содержащей 0,98% титана, или через электродную проволоку, содержащую 0,15—0,20% титана. Титан измельчает зерно алюминия и способствует разрушению эвтектических прослоек, залегающих по границам зерен. Это предотвращает образование трещин при сварке. Титан увеличивает также плотность металла шва. При сварке алюминия марок АО (99,6% А1) и А1 (99,5% А1) трещин не образуется. Исправление дефектов можно 92  [c.92]

Титан — это самый перспективный материал для изготовлення химического оборудования. Технология производства титана достаточно освоена выпускается титан чистотой до 99,5 /о. При удельном весе 4,5 кГ см тнтан и его сплавы по прочности превосходят лучшие марки стали. Промышленные марки титана хорошо деформируются, прокатываются и штампуются. Полуфабрикаты из титана выпускают в виде фольги, листов, полос, прутка, проволоки, труб и пр. Титан удовлетворительно обрабатывается на металлорежущих станках и хорошо сваривается при использовании аргоно-дугового способа. Механические свойства титана и его сплавов (табл.. 31-У1П) зависят от способа их производства н содержания химических элементов.  [c.121]

Бор довольно сильно окисляется в условиях дуговой сварки. Так, при сварке открытой дугой проволоками с малыми добавками бора он окисляется почти полностью. Обладая большим сродством к кислороду (см. рис. 15), бор может участвовать в развитии не только кремне- и марганцевовосстановительных процессов, но и восстанавливать титан из шлака, содержащего кислородные соединения титана. Разумеется, речь идет о довольно больших концентрациях бора в сварочной ванне, измеряемых десятыми долями процента. В иных условиях, при наличии в составе флюса довольно больших количеств окислов бора (например, 20%) возможно восстановление бора не только титаном и алюминием, но и хромом, углеродом, кремнием и марганцем. В табл. 19 приведены данные о переходе бора в металл шва из бористого фторидного флюса системы СаРа—В2О3 (АНФ-22). При отсутствии бора в сварочной проволоке и основном металле конечное содержание его в металле шва может достигнуть 0,2—0,3%, а при наличии в шве титана — даже 0,5—0,6%. Это обстоятельство несомненно расширяет возможности сварки под флюсом применительно к жаропрочным сталям и сплавам. Здесь имеется в виду не само по себе легирование металла шва бором через флюс, а возможность предотвращения угара бора при использовании проволоки или стали, легированной бором, в сочетании с бористым плавленым флюсом. 76  [c.76]


Смотреть страницы где упоминается термин Титан и его сплавы проволока : [c.84]    [c.14]    [c.158]   
Технология электрической сварки металлов и сплавов плавлением (0) -- [ c.292 ]



ПОИСК



Проволока сварочная из титана и его сплавов

Титан

Титан и его сплавы

Титан и сплавы титана

Титанит

Титания



© 2025 Mash-xxl.info Реклама на сайте