Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность — Коэффициенты запаса в расчетах практических

Практически расчет по допускаемым напряжениям обычно выполняют как проектный, служащий для определения требуемых размеров детали в этой стадии проектирования в большинстве случаев практически невозможно более или менее точно учесть все факторы, влияющие на прочность детали (концентрация напряжений и т. д.). Поэтому оказывается целесообразным выполнить уточненный проверочный расчет сконструированной детали на основе ее рабочего чертежа, когда есть возможность достаточно точно учесть концентрацию напряжений, масштабный эффект и т. п. Этот проверочный расчет предпочтительно выполнять непосредственно по коэффициентам запаса в случае, если действительный коэффициент запаса существенно отличается от допускаемого, в размеры и конструкцию детали вносят соответствующие коррективы.  [c.11]


Очевидно, что такое незначительное различие в величинах в этом и предыдущем расчетах практически не скажется на величине общего коэффициента запаса прочности.  [c.320]

Прежде всего, коэффициент запаса не может быть назначен без учета конкретных условий работы рассчитываемой конструкции. Коэффициент п, по существу, определяют исходя из практического опыта создания аналогичных конструкций за прошедшее время и уровня развития техники в данный период. В каждой области техники уже сложились свои традиции, свои требования, свои методы и, наконец, своя специфика расчетов, в соответствии с которыми назначают коэффициент запаса. Так, при проектировании стационарных строительных сооружений, рассчитанных на долгие сроки службы, принимают довольно большие значения коэффициента запаса (яв — 2. .. 5). В авиационной технике, где на конструкцию накладывают серьезные ограничения по массе, коэффициенты запаса (или так называемые коэффициенты безопасности) устанавливают по пределу прочности в интервале 1,5... 2. В связи  [c.101]

При Приближении нагрузки к критическому значению прогибы становятся очень большими. При практических расчетах вводится соответствующий коэффициент запаса прочности, в результате чего допускаемая нагрузка берется значительно меньше критической.  [c.392]

В случае плоского или объемного напряженного состояния вопрос оценки усталостной прочности значительно усложняется. В практических расчетах коэффициент запаса при плоском напряженном состоянии можно определять по формуле  [c.241]

Результаты расчетов пластинчатых цепей на прочность по выражениям (1.15). .. (1.21), хорошо согласующиеся с практическими данными, свидетельствуют о том, что их разрушающая нагрузка по пределам выносливости материала деталей при н = = 1, т. е. при Л э 5 10 , в 6. .. 6,5 раза меньше ее стандартных значений, определяемых при испытаниях на разрыв. А если учесть, что по критерию усталостной долговечности цепь также должна иметь определенный запас (коэффициент запаса не менее 1,3), то приведенные значения реально принимаемых коэффициентов запаса прочности для длительно работающих цепей нельзя признать чрезмерно завышенными и ими следует руководствоваться при ориентировочных расчетах и в учебной практике. Лишь для кратковременно и редко работающих тихоходных конвейеров, у которых значение мало, а следовательно, коэффициент /Ср. достаточно высок (/Ср. н > 2), коэффициенты запаса прочности по отношению к стандартной разрушающей нагрузке могут быть приняты меньшими пяти.  [c.42]


Назначение требуемого коэффициента запаса прочности или, что практически то же самое, выбор допустимого напряжения представляет собой очень ответственную и сложную задачу, правильное решение которой в значительной степени определяет возможность получения при проектировании надежных и в то же время легких и экономичных конструкций, Требуемый (допустимый) коэффициент запаса прочности [п] зависит от ряда факторов, основные из которых следующие точность применяемых методов расчета и расчетных схем, правильность учета действующих на деталь нагрузок и характера их приложения (статические, ударные и т. п.), точность данных о концентрации напряжения, степень ответственности детали, степень однородности применяемого материала, изученность его свойств.  [c.19]

Однако аналитический метод расчета деталей машин на прочность, сменивший метод относительных чисел , хотя и в значительно меньшей степени, но также оказался несовершенным, так как напряжения в деталях машин со сложными конструктивными формами определялись, как уже подчеркивалось, по формулам, выведенным при значительных упрощениях в расчетной схеме деталей. Это, как и при методе относительных чисел , исключало возможность выявления действительных рабочих напряжений и деформаций, имеющих место в процессе эксплуатации. Все учение о прочности в этот период времени было основано на практических нормах допускаемых напряжений, нашедших свое выражение в общем коэффициенте запаса прочности.  [c.22]

Расчеты на прочность, изучаемые в курсе сопротивления материалов, характерны тем, что, за крайне редкими исключениями, материал рассчитываемого объекта задан также задан требуемый коэффициент запаса прочности или, что практически то же самое, известно допускаемое напряжение. При проектировании деталей машин материал, а также требуемый коэффициент запаса прочности (допускаемое напряжение) также выбирает конструктор.  [c.8]

При практических расчетах на усталость в случае постоянных по времени амплитуде и среднем значении цикла используются следующие формулы для определения коэффициентов запаса прочности п с учетом концентрации напряжений, асимметрии цикла, масштабного фактора  [c.84]

Усталость конструкций типа мостов в большинстве случаев является, если можно так выразиться, болезнью старого возраста и обычно проявляется только после многолетней службы. Например, в конструкциях клепаных железнодорожных мостов после 30—50 лет службы появилось большое число усталостных трещин [6]. Ввиду невозможности точно предвидеть условия нагружения моста в будущем, бывает трудно выбрать число циклов и условия нагружения для расчета прочности при проектировании. Однако при использовании имеющихся данных лабораторных испытаний в сочетании с правильно выбранным коэффициентом запаса прочности обычно оказывается возможным выработать практически расчетные условия и назначить допускаемые напряжения, обеспечивающие безопасную эксплуатацию проектируемой конструкции со сварными, заклепочными или болтовыми соединениями.  [c.7]

Составление формулы для практического расчета на продольный изгиб. Необходимо уяснить, что критические напряжения при раст четах на устойчивость играют такую же роль, как временное сопротивление в расчетах на прочность. Нельзя допустить, чтобы в сжатых стойках возникли нормальные напряжения, равные критическим. Поэтому необходимо от критических напряжений, определяемых при большой гибкости по формуле Эйлера, а при малой по формуле Тетмайера — Ясинского, перейти к допускаемым напряжениям при продольном изгибе. Для этого нужно критические напряжения разделить на коэффициент запаса к. Последний принимают равным для металлов А==2—3 для дерева к=Ъ—4. Этим коэффициентом запаса учитывается, кроме чистого продольного изгиба, еще целый ряд побочных факторов небольшой возможный эксцентриситет приложения нагрузки, небольшое начальное искривление стержня, неоднородность материала и др.  [c.488]


При расчетах пластмассовых изделий очень важно знать допускаемые напряжения. Это обусловливается особенностями пластмасс, их значительными деформациями в напряженном состоянии, которые не должны превышать предельно допустимые, приводящие к изменению конструктивной формы. Сравнение величин допускаемых напряжений, применяемых на практике, с осредненными значениями пределов прочности показывает, что исходные допускае.мые напряжения для термопластов в 2—3 раза, а для реактопластов — в 1,2—1,5 раза меньше, чем соответствующие им пределы прочности. Практически за расчетное допускаемое напряжение принимают значение предела текучести (ползучести) или предела выносливости (при цикличных и знакопеременных нагрузках) с коэффициентом запаса прочности в пределах 1,2—3, т. е.  [c.159]

Коэффициент запаса прочности должен учитывать также практическую невозможность строгого теоретического расчета опор воздушных линий. Последнее в особенности относится к деревянным опорам, при расчете которых вследствие анизотропности древесины и недостаточности теоретических разработок приходится применять приближенные методы расчета опор в целом и их элементов.  [c.93]

Все сказанное свидетельствует о степени сложности выбора коэффициента запаса при расчете как по допускаемым напряжениям, так и по допускаемым нагрузкам. Единым коэффициентом запаса практически нет возможности учесть многие факторы, влияющие на режим эксплуатации изделия, конструкции, поэтому в практику строительства в СССР внедряют более прогрессивный и экономичный метод выбора условий (эезопасной эксплуатации конструкции, который начинает находить применение и в других областях инженерной деятельности, связанных с необходимостью проведения расчетов на прочность. Это метод расчета по предельным состояниям, который введен в Строительные нормы и правила (СНиП), по которому в настоящее время рассчитывают все конструкции промышленных и гражданских зданий и сооружений.  [c.72]

Прежде всего, величина коэффициента запаса не может быть назначена без учета конкретных условий работы рассчитываемой конструкции. Коэффициенг и, по существу, определяется практическим опытом создания аналогичных конструкций за прошедшее время и уровнем техники в данный период. В каждой обласги техники уже сложились свои традиции, свои требования, свои мето,цы и, наконец, своя специфика расчетов, в соответствии с которыми и назначается коэффициент запаса. Так, например, при проектировании стационарных строительных сооружений, рассчитанных на долгие сроки службы, запасы принимаются довольно большими (Пд = 2 5). В авиационной технике, где на конструкцию накладываются серьезные ограничения по весу, коэффициенты запаса (или так называемые коэффициенты безопасности ) определяются по пределу прочности и составляют величины порядка 1,5- -2. В связи с ответственностью конструкции в этой области техники сложилась практика проведения обязательных статических испытаний отдельных узлов и целых летательных аппаратов для прямого определения величин предельных нагрузок.  [c.76]

Работоспособность оборудования (трубопроводы, сосуды, аппараты и др.) зависит от качества проектирования, изготовления и эксплуатации. Качество проектирования, в основном, зависит от метода расчета на прочность и долговечность, определяется совершенством оценки напряженного состояния металла, степенью обоснованности критериев наступления предельного состояния, запасов прочности и др. В области оценки напряженного состояния конструктивных элементов аппарата к настоящему времени достигнуты несомненные успехи. Достижения в области вычислительной техники позволяют решать практически любые задачи определения напряженного состояния элементов оборудования. Достаточно обоснованы критерии и коэффициенты запасов прочности. Тем не менее, существующие методы расчета на прочность и остаточного ресурса тр>ебуют существенного дополнения. Они должны базироваться на временных факторах (коррозия, цикличность нагружения, ползучесть и др.) повреждаемости и фактических данных о состоянии металла (физико-механические свойства, дефектность и др.).  [c.356]

Таким образом, необходимо иметь возможность оценить прочность при плоском или объемном напряженном состоянии, располагая данными о свойствах материала (значении предельного напряжения) при одноосном напряженном состоянии. Практически эта задача рещается путем замены при расчете на прочность заданного плоского (или объемного) напряженного состояния эквивалентным (равноопасным, т. е. имеющим одинаковый коэффициент запаса прочности) ему одноосным растяжением. Напряжение, соответствующее этому воображаемому (расчетному) линейному напряженному состоянию, также называется эквивалентным (Здкв)- Оно может быть определено расчетным путем по известным для заданного напряженного состояния значениям главных напряжений на основе принятого критерия (признака) эквивалентности различных напряженных состояний. Выбор того или иного критерия эквивалентности зависит в первую очередь от свойств материала рассчитываемой детали, а в отдельных случаях и от вида напряженного состояния.  [c.207]

Сравнением вычисленных напряжений а или т с допускаемыми [а определяются коэффициенты расчетного запаса = ( rl/a и П == 1т]/т. Для конструкций, работающих на устойчивость, расчетный запас равен отношению критических нагрузок к расчетным Л = PhplfP - Конструкция удовлетворяет требованиям, прочности, если = 1. При > 1 имеется избыток прочности. Реальная работа конструкции почти никогда не соответствует принятой расчетной схеме, поэтому определение точных значений разрушающих нагрузок теоретическим путем практически невозможно, за исключением некоторых простейших схем. Наиболее достоверно разрушающие нагрузки, как правило, устанавливаются опытным путем. Из приближенности расчетных схем также следует, что к оценке конструктивных изменений по расчетным запасам нужно подходить с осторожностью. Не зная допущений и всех условностей, принятых в расчете, можно прийтн к неверному выводу.  [c.31]


Указанные значения допускаемых напряжений можно принимать лишь в случае чистого фучевня. Практически на кручение обычно рассчитывают валы, которые помимо деформации кручения испытывают также изгиб. Не учитывая при ориентировочном расчете валов влияние изгиба, делают ошибку, приводящую к уменьшению фактического коэффициента запаса прочности.  [c.125]

СЛОЖНО и громоздко, расчет проводов ведется в предположении, что опора не прогибается. Тяжение по оборванному проводу получается несколько ббльшим, чем найденное с учетом гибкости опоры и поддерживающего действия тросов. При таком расчете действительный коэффициент запаса прочности опоры будет больше расчетного. Расход леса при обоих методах расчета практически получается одинаковым.  [c.194]


Смотреть страницы где упоминается термин Прочность — Коэффициенты запаса в расчетах практических : [c.403]    [c.654]    [c.357]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.180 , c.181 ]



ПОИСК



Запас

Запас прочности

Коэффициент запаса

Коэффициент запаса прочност

Коэффициент запаса прочности

Коэффициент запаса прочности (коэффициент

Коэффициент прочности

Коэффициент расчет



© 2025 Mash-xxl.info Реклама на сайте