Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения вязкой жидкости первого ряда)

Распространим уравнение Бернулли для струйки невязкой (идеальной) жидкости на элементарную струйку вязкой (реальной) жидкости, полагая условно, что она находится во взаимодействии с соседними струйками и энергия от нее не передается другим струйкам. Такое уравнение необходимо -для получения практических решений, поскольку в действительности инженеру приходится обращаться с жидкостью вязкой, обладающей рядом свойств, которые не учитываются при использовании понятия об идеальной жидкости. В первую очередь следует отметить вязкость реальной жидкости, которая обусловливает сопротивление движению и, как следствие, вызывает потерю части энергии движущейся жидкости. При движении идеальной жидкости, в которой вязкость, следовательно, и сопротивления движению отсутствуют, полный напор по длине струйки постоянен.  [c.81]


Первая фундаментальная работа в области теоретического исследования ламинарно-волнового течения вязкой жидкости была проведена П. Л. Капицей [56], который проанализировал уравнения движения при наличии возмущений на поверхности раздела фаз. В дальнейшем ламинарно-волновое течение изучалось в ряде работ [1, 3, 10, И, 13, 19, 36, 41, 45, 46, 49, 50, 68, 72, 77, 80, 82, 86, 91, 96, 101, 104, 114, 115, 121, 126-128, 134, 135, 138, 146-149, 156, 161, 171, 175, 178, 180, 194, 195, 198, 213—217], причем основной вклад в развитие теории этого процесса был внесен советскими авторами.  [c.184]

Теория пограничного слоя была развита немецким инженером и математиком Л. Прандтлем в ряде публикаций, начиная с 1904 г. [Л. 4]. Это одно из наиболее значительных открытий в истории механики жидкости оно позволило понять многие кажущиеся парадоксы в поведении реальной жидкости. Теория пограничного слоя открывает путь к решению многих проблем, слишком сложных, чтобы их можно было решить прямым интегрированием полной системы уравнений движения и неразрывности. Ползущее движение и течение с пограничным слоем являются двумя предельными случаями проявления действия вязкости. Грубо говоря, первое имеет место для очень вязких жидкостей, а последнее — для жидкостей малой вязкости. С другой стороны, в то время как ползущее движение может быть только ламинарным, течение в пограничных слоях может быть как ламинарным, так и турбулентным.  [c.177]

При рассмотрении газа как вязкой несжимаемой жидкости интегрирование системы уравнений движения и уравнения неразрывности может быть проведено лишь для некоторых частных случаев. В качестве примеров ниже указывается методика интегрирования этой системы уравнений для несжимаемой вязкой жидкости в двух случаях при установившемся пространственном ламинарном течении жидкости по цилиндрическому каналу круглого сечения или по зазору между стержнем и втулкой и при аналогичном течении жидкости по зазору между торцом сопла и заслонкой (см. рис. 23.4, а). В связи с особенностями рассматриваемых течений при выводах первоначально приходится учитывать изменение скорости вдоль каждой данной линии тока и нельзя сразу же приближенно считать, что течение подчиняется уравнению элементарной струи газа, как это иногда делалось ранее для одномерных потоков газа. В первом из рассматриваемых случаев решение доводится до квадратур (формула Пуазейля), во втором случае решение представляется в виде бесконечного ряда. Рассмотрим каждый из этих случаев.  [c.462]


Хронологически за работами античных ученых следуют работы Леонардо да Винчи (1452—1519 гг.), но его труды, к сожалению, были опубликованы лишь в XIX—XX вв. Леонардо да Винчи занимался, в частности, разработкой теории плавания и истечения жидкостей из отверстий, а также изучением механизма движения воды в реках и каналах. Дальнейшие работы в области гидравлики связаны с именами Г. Галилея, Б. Паскаля, И. Ньютона и др. X. Гюйгенс (1629—1695 гг.) и И. Ньютон (1642—1727 гг.) первыми установили на основе опытов, что сопротивление в жидкостях в ряде случаев пропорционально квадрату скорости их движения. Гипотеза Ньютона о пропорциональности напряжения трения в вязких жидкостях градиенту скорости по нормали и свойствам жидкости — ее вязкости стала законом современной гидравлики, широко используемым во многих уравнениях движения жидкостей.  [c.6]

При распыливании ряда топлив с вязкостью от 3 до 20 мм сек были получены расходные характеристики и противодавления для каждой ступени в отдельности. Суммарный расход, подсчитанный по уравнению (93) с опытными значениями ij, [ ц, р р, и р р ц, точно соответствовал расходу, измеренному на стенде. Однако расчет каждой ступени, особенно первой, и противодавлений вызывает ряд трудностей, так как в случае работы на вязких топливах следует в расчете первой ступени учитывать потери на трение не только на участке движения топлива от входных каналов до сопла, но и в мертвой зоне между входными каналами первой и второй ступеней. Несмотря на то, что топливо через этот участок и не проходит, заключенная в этом объеме масса топлива в результате внутреннего трения между слоями жидкости вращается. На это затрачивается значительная часть энергии, снижаются величины напора и момента количества движения, что приводит к уменьшению угла факела и увеличению размеров капель.  [c.119]

Изучение движения вязкой жидкости в области пограничного слоя основывается, как уже упоминалось, на интегрировании уравнений пограничного слоя, представляющих уравнения Стокса, существенно упрощенные за счет принятия в расчет малости толщины пограничного слоя. Решение этих, носящих имя своего создателя Л. Прандтля ) уравнений, как будет показано в следующем параграфе, представляется первым членом разложения решения уравнения Стокса в ряд по степеням малого безразмерного параметра — отношения масштаба толщины пограничного слоя к характерному для потока в целом масштабу обтекаемого тела (например, хорде крыла) — имеющего порядок обратной величины корня квадратного из рейнольдсового числа. Этот первый член содержит малый параметр в нулевой степени, поэтому уравнения пограничного слоя можно рассматривать как нулевое приближение в асимптотическом (при больших рейнольдсовых числах) разложении болееобщих уравнений движеиия вязкой жидкости — уравнений Стокса.  [c.557]

Асимптотический след за равномерно движущимся телом. В гл. 4 было указано на возможность развития обобщенного муль-типольиого подхода иа другие виды гидродинамических течений. Этот подход оказывается полезен ири построении асимптотического решения для задачи обтекания равномерно движущегося тела и для затопленных струп, распространяющихся в однородном потоке вязкой жидкости. В основу подхода здесь удобно положить интегральную форму уравнений Навье — Стокса получаемую обращением оператора Озеена для линеаризованной задачи. Совершив над этим уравнением преобразование Фурье, можно вывести интегральное уравнение в -пространстве, из которого получены в явном виде первые три члена асимптотического решепия с помощью разложения при А -> 0. Решеиие задачи об обтекании как и в случае затопленных струй, неаналитичио в бесконечно удаленной точке (второй член разложения содержит 1п1 ). Асимптотическое разложение можно представить в виде ряда ио дробным производным от некоторых фундаментальных тензоров. Главный член асимптотического разложения полностью определяется заданием полного потока импульса и расхода. Остальные два члена разложения определяются, кроме этих интегралов движения, полным потоком момента количества движения.  [c.321]


В твердом теле, т. е. в области давлений Р и температур Т, ограниченной линией плавления, деформации являются упруг ми или пластическими. Впрочем, в ряде сред наблюдаются сложные деформации типа вязкоупругих, упругопластических или вязкопла-стических. В областях жидкости, газа и нлазмы чаще всего дефо<р-мации носят вязкий характер. Система уравнений в частных производных, описывающих поведение сплошной среды, содержит три группы уравнений. К первой относятся законы сохранения массы, количества движения и энергии. Тензорный характер напряжений  [c.11]


Смотреть страницы где упоминается термин Уравнения движения вязкой жидкости первого ряда) : [c.26]    [c.8]    [c.126]    [c.4]   
Курс теоретической механики для физиков Изд3 (1978) -- [ c.209 ]



ПОИСК



283 — Уравнения жидкости

548 — Ряды

Вязкая жидкость в движении

Движение вязкой жидкости

Жидкости вязкие — Уравнения движения

Жидкость вязкая

Уравнения движения вязкой жидкости

Уравнения движения жидкости

Уравнения тел вязких



© 2025 Mash-xxl.info Реклама на сайте