Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Степени твердого тела

Как известно, в общем случае всякое свободно движущееся в пространстве абсолютно твердое тело (рис. 1.3), положение которого определяется тремя произвольно выбранными точками А, В и С, обладает шестью степенями свободы. В самом деле, положение твердого тела в пространстве фиксируется координатами трех его точек Л, В и С, т. е. девятью координатами (х , Уа, л), у в, Zg] и (Хс, Ус, с)- Между собой эти координаты связаны тремя условиями постоянства расстояний АВ, ВС, СА. Таким образом, число независимых параметров, определяющих положение твердого тела в пространстве, равно шести и тело обладает шестью степенями свободы. Движение такого тела может быть всегда представлено как вращение вокруг и перемещение вдоль трех произвольно выбранных взаимно перпендикулярных осей х, у и  [c.22]


Таким образом, коэффициент поглощения (а следовательно и степень черноты) слоя запыленной среды, в отличие от твердого тела, зависит от его толщины и концентрации пыли.  [c.95]

Как известно из механики, твердое тело в пространстве имеет шесть степеней свободы три возможных перемещения (/, II, ///, рис. 7) вдоль трех произвольно выбранных взаимно перпендикулярных осей  [c.42]

Большинство реальных твердых тел с определенной степенью точности можно считать серыми телами, а их излучение — серым излучением.  [c.464]

Рассмо грим общий случай движения свободного твердого тела, т. е. тела, имеющего шесть степеней свободы. Покажем, что самое общее движение свободного твердого тела можно  [c.189]

Если рассматривать звено свободно движущимся в пространстве, то оно, как и любое изолированное твердое тело, обладает шестью степенями свободы, каждая из которых определяется изменением одной обобщенной координаты Т Изменениям обобщенных координат свободного звена в пространстве соответствуют три поступательных (ППП) перемещения вдоль координатных осей х, у и 2 и три вращательных (ВВВ) движения вокруг тех же осей (рис. 3).  [c.10]

Псевдоожиженным слоям вследствие применения в устройствах для смешивания, тепло- и массообменных установках и химических реакторах, особенно при очистке нефти, посвящены многие исследования. Все же по сравнению с системами газ — твердое тело и газ — жидкость псевдоожиженный слой в меньшей степени поддается строгому исследованию.  [c.400]

Свободное твердое тело, движение которого определяется шестью уравнениями, имеет шесть степеней свободы. Механическая система, положение которой определяют s обобщенных координат, имеет s степеней свободы.  [c.299]

В книге сделана попытка обобщить и систематизировать литературные данные, а также связать физические свойства материалов, в частности степень черноты, со структурными параметрами твердого тела и с методами получения покрытий. Проведена классификация структур тугоплавких неметаллических соединений и разработана инженерная схема расчета-оценки степени черноты. Полученные  [c.3]

Предположим теперь, что твердое тело, имеющее форму тела вращения вокруг оси АВ, например колесо или тор, равномерно вращается вокруг этой оси АВ с угловой скоростью со, в то же время эта горизонтальная ось АВ вращается равно-мер /о вокруг неподвижной вертикальной оси с угловой скоростью (Oj. Требуется определить реакции в подшипниках Л и А, перпендикулярные к оси АВ, если вес тела равен Р и АС — 1 , СВ = 1 , /, -f = причем С — центр тяжести данного тела (рис. 201, а и б). Такое тело представляет собой гироскоп с двумя степенями свободы.  [c.350]


Как и в случае материальной точки, вопрос о том, можно ли (и нужно ли) рассматривать некий материальный объект как твердое тело, определяется не его размерами, а особенностями движения и степенью идеализации задачи. Так, например, Землю удобно рассматривать как твердое тело, если надо учесть ее вращение вокруг собственной оси, но как твердое тело удобно иногда рассматривать и простейшую модель молекулы.  [c.41]

Твердое тело представляет собой систему с шестью степенями свободы. Действительно, в гл. I было показано, что движение системы отсчета, а значит, и связанного с ней тела, всегда можно рассматривать как сложное движение, в котором переносным является поступательное движение вместе с какой-либо произвольно выбранной точкой А тела, а относительным— движение тела с неподвижной точкой Л. Положение точки А полностью определяется тремя координатами этой точки положение же тела, одна точка которого неподвижна, полностью определяется заданием трех величин, например трех углов (далее будет подробно разъяснено, каким образом можно выбрать эти три угла).  [c.171]

Так, твердое тело, вращающееся вокруг неподвижной оси, имеет одну степень свободы, так как положение этого твердого тела вполне определяется углом поворота <р вокруг оси вращения.  [c.337]

Твердое тело, совершающее плоское движение, имеет три степени свободы, так как положение любого его сечения, проведенного параллельно неподвижной плоскости, определяется двумя координатами центра тяжести сечения х и и углом поворота ср.  [c.337]

Системой с тремя степенями свободы является твердое тело, вращающееся вокруг неподвижной точки. Его положение, определяется тремя углами Эйлера ср, ф и б.  [c.337]

Системой с шестью степенями свободы является свободное твердое тело, так как его положение определяется шестью независимыми параметрами тремя координатами центра тяжести х , у , и тремя углами Эйлера <р, ф и б.  [c.337]

Рещение. Твердое тело, вращающееся вокруг неподвижной оси, имеет одну степень свободы. Действительно, для определения положения всех его точек достаточно задать один параметр, например его угол поворота (р. Выберем <р в качестве обобщенной координаты.  [c.474]

Движение по инерции твердого тела, имеющего неподвижную точку. Твердое тело, вращающееся вокруг неподвижной точки, имеет три степени свободы. Его положение определяется тремя углами Эйлера.  [c.523]

Рассмотрение процесса удара по существу требует выхода за рамки классической механики — отказа от схемы абсолютно твердого тела и перехода к схеме деформируемого тела. В зависимости от степени восстановления недеформированного состояния удары разделяются на неупругие, частично упругие и упругие.  [c.547]

Влияние гироскопических сил и сил вязкого сопротивления на свободные и вынужденные колебания твердого тела с двумя степенями свободы  [c.607]

Влияние вязкого трения и гироскопических сил на свободные колебания твердого тела с двумя степенями свободы. В пункте 1 этого параграфа было рассмотрено влияние гироскопических сил на свободные колебания системы с двумя степенями свободы. При этом не учитывались диссипативные силы, которые в виде вязкого сопротивления среды, сухого трения и внутреннего трения в материале всегда сопутствуют движению. Из всех разновидностей диссипативных сил, учитывая сравнительную простоту математических выкладок и значительное распространение этих сил в технике, мы рассмотрим только силы вязкого трения.  [c.613]

Как следует из изложенного выше, связь между размахом КИН и размером обратимой пластической зоны в значительной степени определяет величину Kth- Поэтому с целью оценки влияния допущения об однородности НДС в структурном элементе на размер пластической зоны были сопоставлены пластические зоны при двух вариантах расчета МКЭ при условии малости структурного элемента (в этом случае конечного) рстр <С Гр, что эквивалентно расчету в рамках механики деформируемого твердого тела, и расчетом  [c.215]


P/sтемпература поверхности твердого тела и Т —температура газа. Постоянная С имеет значение около 3,5 10 . Из уравнения (3.29) можно получить изотермы адсорбции, представив на диаграмме Л об как функцию от Р при постоянной температуре Т, или изобары адсорбции, представив NqQ как функцию от Р при постоянном давлении Р. Уравнение (3.29) позволяет понять всю сложность проблемы сорбции в газовой термометрии, когда изменяются как.Р, так и Г. Кроме того, необходимо учесть, что значение Nq есть функция реальной, а не геометрической площади поверхности. Известно [63], что реальная площадь поверхности отличается от геометрической и в очень большой степени зависит от предварительной обработки. Например, реальная площадь механически полированной  [c.89]

В тридцать втором издании сделана попытка, не выходя за рамки теоретической механики, отразить в какой-то степени новые проблемы техники и более полно охватить те вопросы классической механики, которые не нашли до сих пор достаточного освещения. В связи с этим в Сборник введены новые разделы, содержащие задачи по пространственной ориентации, динамике космического полета, нелинейным колебаниям, геометрии масс, аналитической механике. Одновременно существенно дополнены новыми задачами разделы кинематики точки, кинематики относительного дзихсения и плоского движения твердого тела, динамики материальной точки и системы, динамики точки и системы переменной массы, устойчивости движения. Небольшое количество новых задач введено также почти во все другие разделы Сборника некоторые задачи исключены из него. Сделаны также небольшие перестановки в размещении материала. В конце Сборника в качестве добавления приведена Международная система единиц (СИ).  [c.8]

Пусть на тело действует плоская система активных сил и тело находится в равновесии, соприкасаясь с поверхностью другого тела, являющегося связью для рассматриваемого тела. Если поверхности соприкасающихся тел абсолютно гладкие и тела абсолютно твердые, то реакция поверхносчи связи направлена по нормали к общей касательной в точке соприкосновения и направление реакции в этом случае не зависит от действующих на тело активных сил. От активных сил зависит только числовое значение силы реакции. В действительности абсолютно гладких поверхностей и абсолютно твердых тел не бывает. Все поверхности тел в той или иной степени шероховаты и все тела деформируемы. В связи с этим и сила реакции R шероховатой поверхности при равновесии  [c.66]

Чис.юм степеней свободы твердого тела называют число пеишисимых параметров, определяющих положепие тела отпо-сптсльпо рассматриваемой системы опп чета.  [c.133]

В реальном течении, как показывают эксперименты, закрутка потока несколько отличается от составного вихря Рэнкина, получаемого в процессе решения уравнения движения (4.79). Учет отклонения приосевого вихря от вращения по закону твердого тела со = onst осушесталяется введением показателя степени при радиусе  [c.192]

Численный эксперимент по определению запаса кинетической энергии, затраченного на реализацию микрохолодильных циклов (рис. 4.10), показал, что распределение окружной скорости практически во всем диапазоне отличается от закона вращения твердого тела. Причем с ростом относительного расхода охлажденного потока д, которому соответствует снижение степени расширения газа в вихревой трубе л,, отклонение от закона вращения твердого тела у вынужденного вихря увеличивается. При одном и том же давлении на входе /, величина л, характеризующая сте-  [c.204]

Существует характерная степень расширения в вихревой трубе (или относительная доля охлажденного потока) (рис. 4.11), при которой кинетическая энергия вынужденного вихря становится больше исходной. На режимах вращения вынужденного вихря отстает от закона вращения твердого тела — со = onst. Избыточная кинетическая энергия свободного вихря расходуется на трение о стенки (работа внешних поверхностных сил) и на работу внутренних поверхностных сил. При турбулентном течении пульсационное движение непрерывно извлекает энергию из ос-редненного движения. Эта чдсть энергии обеспечивает работу переноса турбулентных молей в поле радиального фадиента статического давления [121, 122]. Если допустить, что под действием турбулентности перемещаются среднестатистические турбулентные моли с массой dm, совершающие элементарные циклы парокомпрессионных холодильных машин, то можно найти работу, затраченную на их реализацию. Объем турбулентного моля и путь его перемещения невелики по сравнению с контрольным объемом П, поэтому изменение температуры при изобарных процессах теплообмена моля с окружающими его частицами незначительно. Это позволяет, не внося существенной погрешности, заменить цикл Брайтона циклом Карно. Тогда работа по охлаждению выделенного контрольного объема П равна сумме элементарных работ турбулентных молей  [c.206]

Как уже указывалось, статически неопределимыми называются системы, силовые факторы в элементах которых только из уравнений равновесия твердого тела определить нельзя. В таких системах больше связей, чем необходимо для равновесия. Таким образом, некоторые связи оказываются в этом смысле как бы лишними, а усилия в них — лишними неизвестными. По числу лишиих связей или лишних неизвестных усилий устанавливают степень статической неопределимости системы.  [c.393]


Так как иоложеиие твердого тела, имеющего одну неподвижную точку, определяется т[. смя эйлеровыми углами, т. е. тремя параметрами, то оио нмеег три степени свободы.  [c.274]

Положение твердого тела, одна из точек которого неподвижна, можно определить путем задания трех эйлеровых углов ijj, Q и ф. Из этого следует, что тако тело имеет три степени свободы. Гироскоп с тремя степенями свободы, быстро враш,ающийся вокруг сгюей оси, обладает особым ( эизическим свойством — оказывать сопротивление силам, стремящимся сместить его ось. Чтобы обнаружить это свойство, рассмотрим гироскоп, неподвижная точка которого совпадает с его центром тяжести.  [c.246]

Твердое тело, вращаюи1ееся вокруг пеиодвижной оси, имеет одну степень свободы, так как его положение определяется только углом поворота ср.  [c.299]

В результате этого, несмотря на наличие большого количества эксиериментальных данных по оптическим свойствам диэлектрических материалов, использование, их в практической работе затруднительно, так как требует тщательной иерепроверки. Кроме того, как уже отмечалось, результаты исследований не систематизированы, носят характер фиксации, а теория расчета, связывающая степень черноты структурными параметрами твердого тела, развита, особенно в части диэлектриков, недостаточно. Все это вызывает очень большие трудности при выборе материалов с требуемыми свойствами, причем с увеличением температурного интервала эксплуатации задача еще больше усложняется.  [c.39]

Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]


Смотреть страницы где упоминается термин Степени твердого тела : [c.93]    [c.133]    [c.134]    [c.190]    [c.428]    [c.81]    [c.468]    [c.360]    [c.288]    [c.87]   
Курс теоретической механики Часть1 Изд3 (1965) -- [ c.97 , c.99 , c.141 ]



ПОИСК



Более сложная модель - твердое тело с внутренней степенью свободы

Влияние вязкого трения и гироскопических сил на свободные колебания твердого тела с двумя степенями свободы

Влияние вязкого трения на вынужденные колебания твердого тела с двумя степенями свободы

Влияние гироскопических сил и сил вязкого сопротивления на свободные и вынужденные колебания твердого тела с двумя степенями свободы

Влияние гироскопических сил на вынужденные колебания твердого тела с четырьмя степенями свободы. Самоцентрирование

Влияние гироскопических сил на свободные колебания твердого тела с четырьмя степенями свободы

Вынужденные колебания твердого тела с двумя степенями свободы с учетом гироскопических сил

Вынужденные колебания твердого тела с одной степенью свободы под действием гармонического внешнего воздействия при наличии в системе линейного демпфера

Вынужденные линейные колебания твердого тела с одной степенью свободы под действием гармонической внешней силы

Затухающие свободные колебания твердого тела с одной степенью свободы под действием линейного демпфера

Кинематика твердого тела Степени свободы материальной точки и твердого тела. Уравнения движения

Свободные колебания твердого тела, имеющего одну степень свободы, под воздействием линейной восстанавливающей силы

Соударение твердого тела и системы с одной степень свободы

Степени свободы твердого тела

Твердое тело с внутренними (скрытыми) степенями свободы

Число степеней свободы систем твердого тела

Число степеней свободы твёрдого тела



© 2025 Mash-xxl.info Реклама на сайте