Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнении Похгаммера для цилиндрических

Уравнения Похгаммера для цилиндрических стержней  [c.58]

УРАВНЕНИЯ ПОХГАММЕРА ДЛЯ ЦИЛИНДРИЧЕСКИХ СТЕРЖНЕЙ 59  [c.59]

УРАВНЕНИЯ ПОХГАММЕРА ДЛ ЦИЛИНДРИЧЕСКИХ СТЕРЖНЕЙ  [c.61]

С другой стороны, для бесконечного цилиндра часть энергии, переносимая элементарными сферическими волнами, постепенно падает до нуля, так что аргументация предыдущего параграфа неприменима. Здесь следует заметить, что уравнения Похгаммера представляют собой не что иное, как уравнения движения упругой среды в цилиндрических координатах, и, если эти уравнения применить к неограниченной среде, они укажут на наличие двух и только двух типов волн, распространяющихся со скоростями и с .  [c.66]


Определяя таким образом все векторные функции, входящие в уравнение движения изотропного упругого тела (П.5), придем к уравнениям Похгаммера (3.35), (3.36) и (3.37), использованным в гл. П1 для изучения распространения упругих волн вдоль цилиндрических стержней. Подобным путем можно получить уравнения в сферических координатах (г, 9, ср) в этом случае Л1 =1, h2 = r, hs = r sin 9.  [c.181]

Второй путь построения приближенных теорий заключался в введении гипотез физической природы относительно характера распределения смещений и напряжений. Использование вариационных принципов приводило к искомым уравнениям движения и граничным условиям. Таким образом были построены уточненные уравнения продольных и поперечных колебаний, учитывающие влияние инерции поперечного движения (Рэлей (1878)), теория изгибных колебаний круглой пластины (Кирхгоф (1852)), различные варианты теории цилиндрических и сферических оболочек [123]. С. П. Тимошенко (1921) показал, что учет деформации сдвига в поперечном сечении также важен при поиске адекватных моделей поперечных колебаний стержней. Отметим, что поправки на скорость распространения волн в бесконечном цилиндре, получаемые из уточненных теорий колебаний стержней, совпадали с несколькими первыми членами разложения точных решений Похгаммера — Кри.  [c.14]

Построение дисперсионных соотношений для распространяющихся волн в цилиндре, естественно, нельзя выполнить на основе данных об отражении волн от плоской границы полупространства. Для вывода этих соотношений способом, аналогичным предложенному в 1 и 2 данной главы, необходимо детальное решение довольно сложной задачи об отражении плоских волн от цилиндрической границы. Поэтому при рассмотрении волновых движений в цилиндре проще исходить из набора частных решений уравнений Ламе в цилиндрических координатах. Такие наборы впервые были построены в работах Похгаммера [252] и Кри [168].  [c.144]

Как уже отмечалось при анализе волновых движений в цилиндри-чебком волноводе, наборы частных решений уравнений движения в цилиндрических координатах впервые были приведены в работах Похгаммера [252] и Кри [168]. В работе [168] такие решения использовались для изучения колебаний конечных цилиндров со специальными смешанными условиями на торцах = 0. При этом оказалось возможным выполнить граничные условия путем наложения на падающую волну отраженной волны такого же типа.  [c.194]


Описанный подход к распространению гармонических волн расширения в бесконечном цилиндрическом стержне с помощью точных уравнений приводит к выводу, что энергия не может переноситься вдоль цилиндра этим типом волн со скоростью, превышающей Сд. Некоторые исследователи — Филд [33], Саусвелл [132], Прескотт [114] и Купер [22] — указывают, однако, что теоретически допустимо рассматривать цилиндр таким же методом как безграничную среду. Тогда надо было бы ожидать, что упругие волны будут распространяться только с двумя скоростями, возможными для бесконечной среды (с и с.з), причем эти волны непрерывно отражаются от свободной поверхности цилиндра таким образом, как это описано в предыдущей главе. Тогда, если мы рассмотрим возмущение в некоторой точке внутри цилиндра, то обнаружим, что из этой точки должна распространяться сферическая волна расширения со скоростью с , часть этой волны должна распространяться вдоль цилиндра, не испытывая отражений от поверхности. Амплитуда этой неотра-зившейся волны должна убывать обратно пропорционально расстоянию, вследствие чего действие ее быстро затухает, но, тем не менее, часть энергии переносится со скоростью волн расширения в среде. Части волны, падающие на цилиндрическую поверхность, приводят к появлению отраженных волн расширения и искажения, которые, в свою очередь, при повторном отражении порождают волны обоих типов. Естественно ожидать, что наибольшая часть энергии возмущения будет распространяться со скоростью, меньшей скорости волн расширения. Но теория Похгаммера утверждает, что никакая часть энергии не может переноситься со скоростью, большей Со, и этот парадокс надо разрешить на основании экспериментальных наблюдений.  [c.65]

Основы теории волн в упругом цилиндрическом стержне были созданы Похгаммером и Кри еще в конце прошлого века. Было установлено наличие различных форм собственных волн. В дальнейшем исследования по распространению нестационарных волн в элементах упругих конструкций проводились, как правило, на основе приближенных уравнений, которые получали из соответствующих уравнений статики. Добавление к этим уравнениям инерционных членов позволило построить решения задач о распространении волн, однако некоторые выводы при этом оказались в противоречии с результатами теории упругости. Так, скорость распространения возмущений при динамическом изгибе стержня, определенная по уравнению Бернулли — Эйлера, не имеет верхнего предела, в то время как по теории упругости она должна быть ограничена скоростью продольных волн в сплошной среде. Упомянутое уравнение вообще не позволяет установить наличия фронтов волн. Скорость продольной волны, определяемая приближенным уравнением продольных колебаний стержня, хотя и ограничена, но не совпадает с соответствующей скоростью из теории упругости (см. 35).  [c.10]


Смотреть страницы где упоминается термин Уравнении Похгаммера для цилиндрических : [c.466]    [c.385]   
Волны напряжения в твердых телах (1955) -- [ c.0 ]



ПОИСК



Похгаммер

Уравнения Похгаммера для цилиндрических стержней



© 2025 Mash-xxl.info Реклама на сайте