Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Похгаммер

Задача о распространении продольных, крутильных и поперечных волн в длинных стержнях круглого сечения была рассмотрена в 70-х годах прошлого столетия одновременно и независимо Похгаммером и Кри относительная сложность полученных ими общих формул делала в течение долгого времени их результаты мало обозримыми, лишь в 30-х — 40-х годах были произведены расчеты и построены графики зависимости фазовой скорости от длины волны для случая, когда поле перемещений осесимметрично.  [c.448]

Исчерпывающие решения задач колебаний призматических стержней дал в 1876 г. Л. Похгаммер [160].  [c.224]


Из уравнения (6) при = 1, fJo = 1 получается известное уравнение Похгаммера для гипергеометрических функций.  [c.6]

Задача о распространении гармонических волн в бесконечном упругом круговом цилиндре представляла значительный интерес при построении приближенных одномерных теорий колебаний стержней. В работах Похгаммера (1876) и Кри (1886) общие уравнения упругости применялись для изучения процесса распространения гармонических продольных, изгибных и крутильных волн в бесконечном цилиндре кругового сечения со свободной от нагрузок боковой поверхностью. Аналогичная задача для бесконечного слоя рассмотрена Рэлеем (1889) и Лэмбом (1891, 1917).  [c.12]

Отметим, что полученные соотношения между частотой и длиной волны —дисперсионные уравнения — выглядят обманчиво просто. Однако фактический и подробный анализ уравнений Похгаммера — Кри и Рэлея — Лэмба был проведен сравнительно недавно (в 40-х годах нашего столетия).  [c.12]

Значительные трудности возникали при отыскании собственных колебаний конечных цилиндров. Путем набора частных решений для бесконечного цилиндра (Похгаммер (1876) и Кри (1886)) не удалось точно удовлетворить граничным условиям отсутствия нагрузок на торцах цилиндра. Точные решения были получены лишь для случая скользящей заделки торцов — при отсутствии на них нормальных смещений и касательных напряжений. Однако для определенных значений геометрических размеров и частот Кри (1886) и Лэмб (1917) нашли ряд собственных форм колебаний цилиндра со свободными границами—так называемые эквиволюминальные моды. Аналогичные типы мод Ламе (1852) получил для прямоугольного параллелепипеда с определенным соотношением сторон.  [c.13]

Второй путь построения приближенных теорий заключался в введении гипотез физической природы относительно характера распределения смещений и напряжений. Использование вариационных принципов приводило к искомым уравнениям движения и граничным условиям. Таким образом были построены уточненные уравнения продольных и поперечных колебаний, учитывающие влияние инерции поперечного движения (Рэлей (1878)), теория изгибных колебаний круглой пластины (Кирхгоф (1852)), различные варианты теории цилиндрических и сферических оболочек [123]. С. П. Тимошенко (1921) показал, что учет деформации сдвига в поперечном сечении также важен при поиске адекватных моделей поперечных колебаний стержней. Отметим, что поправки на скорость распространения волн в бесконечном цилиндре, получаемые из уточненных теорий колебаний стержней, совпадали с несколькими первыми членами разложения точных решений Похгаммера — Кри.  [c.14]

Рассматриваемые ниже упругие тела являются простейшими представителями геометрических структур, которые объединяются понятием механического волновода. Распространение волн в слое и цилиндре было предметом многочисленных теоретических и экспериментальных исследований, ведущихся уже более столетия. Возможность выразить характеристики волнового поля в цилиндре через хорошо исследованные специальные функции впервые отмечалась в работах Похгаммера [252] и Кри [168]. Для упругого слоя (двумерная задача) аналогичные результаты получены Рэлеем 1255] и Лэмбом [205]. Первые численные результаты, относящиеся к некоторым характеристикам нормальных волн в слое, содержатся в работе Лэмба [208].  [c.109]


Построение дисперсионных соотношений для распространяющихся волн в цилиндре, естественно, нельзя выполнить на основе данных об отражении волн от плоской границы полупространства. Для вывода этих соотношений способом, аналогичным предложенному в 1 и 2 данной главы, необходимо детальное решение довольно сложной задачи об отражении плоских волн от цилиндрической границы. Поэтому при рассмотрении волновых движений в цилиндре проще исходить из набора частных решений уравнений Ламе в цилиндрических координатах. Такие наборы впервые были построены в работах Похгаммера [252] и Кри [168].  [c.144]

Как уже отмечалось при анализе волновых движений в цилиндри-чебком волноводе, наборы частных решений уравнений движения в цилиндрических координатах впервые были приведены в работах Похгаммера [252] и Кри [168]. В работе [168] такие решения использовались для изучения колебаний конечных цилиндров со специальными смешанными условиями на торцах = 0. При этом оказалось возможным выполнить граничные условия путем наложения на падающую волну отраженной волны такого же типа.  [c.194]

Описанное выше явление краевого резонанса для тонкого диска так же четко проявляется и при анализе форм колебаний длинных цилиндров. При этом краевая мода характеризуется сильно выраженной локализацией области интенсивных движений вблизи торцов. В спектре собственных частот цилиндра (зависимости Qj от h) таким модам соответствуют плато, подобные указанным на рис. 75. Важно отметить, что в этом случае краевой резонанс в одинаковой мере проявляется как для симметричных, так и для антисимметричных относительно плоскости г = О движений. Это естественно, поскольку оба типа деформации связаны с волновыми движениями, описывающимися одним дисперсионным уравнением Похгаммера — Кри (9.3) главы 4.  [c.208]

Проверка точности приближенных уравнений основывается на сравнении их дисперсионных кривых с дисперсионными кривыми, получаемыми из точной теории Похгаммера-Кри [1.1,1.13.  [c.35]

Во второй своей работе ) Похгаммер исследует изгиб балки силами, распределенными по ее боковой поверхности он показывает, что нейтральная ось балки не проходит ч ерез центры тяжести ее поперечных сечений и что обычная элементарная формула для напряжений при изгибе дает лишь первое приближение. Он вычисляет более точное приближение для консоли круглого сечения под нагрузкой, равномерно распределенной по ее верхней образующей. Свой метод Похгаммер распространяет на балку, имеющую вид полого цилиндра, и на кривые брусья.  [c.418]

Полное решение вопроса о продольных колебаниях круглого цилиндра принадлежит Л. Похгаммеру. См. его работу, указанную в сноске на стр. 153.  [c.321]

Di), где /,, /г — компоненты смещения твердой фазы по радиусу по оси л цилиндра. Функции / , 1% выражаются через функции Бесселя /о (/г,г), i = 1,2, JI (h r), где vi hg — константы, определяемые волновым числом и скоростями распространения соответственно продольных волн I и II рода и поперечных волн. При этом условия обращения в нуль нормальной и касательной нагрузок, а также порового давления, приложенных к боковой поверхности цилиндра, определяют дисперсионное уравнение, которое при незначительном влиянии жидкости в поровом пространстве сводится к известному частотному уравнению Похгаммера [101]. Полное дисперсионное уравнение весьма сложно, в связи с чем подробно исследуются частные случаи низкочастотные и высокочастотные волны в тонких стержнях.  [c.142]

Еще в прошлом веке Похгаммером и Кри было получено более точное решение задачи о распространении волн в упругом стержне, поперечное сечение которого есть круг конечного радиуса. Первое приближение решения этой осесимметричной задачи является более точным чем решение Сен-Венана.  [c.14]

Уравнения Похгаммера для цилиндрических стержней  [c.58]

Как упоминалось ранее, теоретически возможно решать любую задачу о колебаниях или о распространении напряжений в упругом теле, если к уравнениям (2.8), (2.9), (2.10) предыдущей главы присоединить соответствующие граничные условия. Однако практически точные решения не получены даже в простейшем случае колебаний цилиндра конечной длины, хотя в этом частном случае можно построить решения, которые дают результаты, очень близкие к истине, когда длина цилиндра велика по сравнению с его диаметром. Эта задача была впервые исследована на основе обших уравнений упругости Похгаммером [111] и независимо от него Кри [17, 18] ).  [c.58]

Сводку результатов Похгаммера можно найти в книге Ляв А., Мате-атическая теория упругости, М.—Л., 1934, стр. 302.  [c.58]

УРАВНЕНИЯ ПОХГАММЕРА ДЛЯ ЦИЛИНДРИЧЕСКИХ СТЕРЖНЕЙ 59  [c.59]

УРАВНЕНИЯ ПОХГАММЕРА ДЛ ЦИЛИНДРИЧЕСКИХ СТЕРЖНЕЙ  [c.61]

Хотя описанное здесь исследование Похгаммера впервые опубликовано в 1876 г. и было очень хорошо известно последующим исследователям в этой области (Релей ссылался на него в Теории звука [120]), численные результаты были получены только в по следние годы. Для продольных волн это было сделано Филдом [33] Бенкрофтом [6], Черлинским [24], Миндлиным [96] и Девисом [25] а численные результаты для аналогичной трактовки изгибных колеба ний, которая будет рассмотрена ниже, опубликованы Хадсоном [61]  [c.62]


Описанный подход к распространению гармонических волн расширения в бесконечном цилиндрическом стержне с помощью точных уравнений приводит к выводу, что энергия не может переноситься вдоль цилиндра этим типом волн со скоростью, превышающей Сд. Некоторые исследователи — Филд [33], Саусвелл [132], Прескотт [114] и Купер [22] — указывают, однако, что теоретически допустимо рассматривать цилиндр таким же методом как безграничную среду. Тогда надо было бы ожидать, что упругие волны будут распространяться только с двумя скоростями, возможными для бесконечной среды (с и с.з), причем эти волны непрерывно отражаются от свободной поверхности цилиндра таким образом, как это описано в предыдущей главе. Тогда, если мы рассмотрим возмущение в некоторой точке внутри цилиндра, то обнаружим, что из этой точки должна распространяться сферическая волна расширения со скоростью с , часть этой волны должна распространяться вдоль цилиндра, не испытывая отражений от поверхности. Амплитуда этой неотра-зившейся волны должна убывать обратно пропорционально расстоянию, вследствие чего действие ее быстро затухает, но, тем не менее, часть энергии переносится со скоростью волн расширения в среде. Части волны, падающие на цилиндрическую поверхность, приводят к появлению отраженных волн расширения и искажения, которые, в свою очередь, при повторном отражении порождают волны обоих типов. Естественно ожидать, что наибольшая часть энергии возмущения будет распространяться со скоростью, меньшей скорости волн расширения. Но теория Похгаммера утверждает, что никакая часть энергии не может переноситься со скоростью, большей Со, и этот парадокс надо разрешить на основании экспериментальных наблюдений.  [c.65]

Можно было бы отметить, что в теории Похгаммера речь идет о синусоидальных волнах, распространяющихся вдоль бесконечного цилиндра. Как показал Ляв (стр. 303), уравнения (3.35), (3.36) и (3.37) не могут быть удовлетворены для свободных колебаний цилиндра конечной длины гармоническими решениями типа (3.42), если предполагать, что торцы цилиндра свободны от напряжений.  [c.65]

С другой стороны, для бесконечного цилиндра часть энергии, переносимая элементарными сферическими волнами, постепенно падает до нуля, так что аргументация предыдущего параграфа неприменима. Здесь следует заметить, что уравнения Похгаммера представляют собой не что иное, как уравнения движения упругой среды в цилиндрических координатах, и, если эти уравнения применить к неограниченной среде, они укажут на наличие двух и только двух типов волн, распространяющихся со скоростями и с .  [c.66]

Для изгибных же волн надо рассматривать все три компоненты перемещения, причем все они зависят от Ь. Поэтому исследование их с помощью уравнений Похгаммера становится очень сложным и не будет здесь приведено во всех деталях. Описание его можно найти у Лява (стр. 304) окончательное уравнение частот рассмотрено Бенкрофтом [6] и Хадсоном [61]. Последний исследовал общий случай колебаний, а уравнение частот для изгибных колебаний вывел в качестве частного случая.  [c.69]

Теория Похгаммера, описанная в предыдущем параграфе, показывает, что скорость распространения продольных синусоидальных волн зависит от длины волны, и только в случае распространения волн кручения основных форм явление дисперсии не имеет места. Эта теория показывает также, что для всех трех типов волн элементарная теория применима лишь в случаях, когда длина волны велика по сравнению с радиусом стержня. Результаты точной теории нельзя безоговорочно применять к распространению единичного импульса, так как такой импульс можно анализировать по синусоидальным составляющим только с помощью интеграла Фурье, который, вообще говоря, дает трудно обозримые результаты. Однако тип искажения, производимый распространяющимся вдоль стержня импульсом, можно оценить на основании дисперсионных кривых фиг. 14—17.  [c.73]

Девис [25] показал, что данные опытов по распространению импульсов напряжения вдоль цилиндрических стержней согласуются с тем, что предсказывается теорией Похгаммера — Кри. Измерения фазовой скорости дают наиболее прямой метод проверки теории, и на протяжении последних лет многие исследователи провели такие измерения. Во всех этих исследованиях использовался метод настройки стержня из данного материала в резонанс фазовая скорость получается тогда как произведение частоты и длины волны. Для заданного стержня можно было бы наблюдать много положений резонанса, соответствующих фундаментальным частотам и ряду гармоник.  [c.92]

Шир и Фокке [130] проводили измерения с целью проверки теории Гибе и Блехшмидта, причем они также нашли, что она теряет силу при высоких частотах. Наконец, в работах Бэнкрофта [6] и Хадсона [61] были получены точные значения скоростей продольных и поперечных волн в цилиндрах на основании уравнений Похгаммера — Кри. Экспериментальные данные Шира и Фокке находятся в хорошем согласии с этими значениями скоростей.  [c.94]

Определяя таким образом все векторные функции, входящие в уравнение движения изотропного упругого тела (П.5), придем к уравнениям Похгаммера (3.35), (3.36) и (3.37), использованным в гл. П1 для изучения распространения упругих волн вдоль цилиндрических стержней. Подобным путем можно получить уравнения в сферических координатах (г, 9, ср) в этом случае Л1 =1, h2 = r, hs = r sin 9.  [c.181]

Похгаммера для цилиндрических стержней 58  [c.190]


Смотреть страницы где упоминается термин Похгаммер : [c.423]    [c.570]    [c.59]    [c.40]    [c.304]    [c.405]    [c.418]    [c.531]    [c.153]    [c.338]    [c.418]    [c.241]    [c.438]    [c.487]   
Теория звука Т.1 (1955) -- [ c.274 , c.279 ]



ПОИСК



Похгаммер (Pochgammer

Уравнении Похгаммера для цилиндрических

Уравнения Похгаммера для цилиндрических стержней



© 2025 Mash-xxl.info Реклама на сайте