Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Эйлера об изменении количества

Уравнения динамики твердого тела. Примем за обобщенные координаты тела три координаты х ., у , его центра масс и три угла Эйлера ф,г1), б. Движение центра масс описывается уравнением (9) теоремы об изменении количества движения. Для твердого тела это уравнение приводится к виду  [c.49]

Заметим, что уравнение, выражающее закон Ньютона для фиксированной частицы с постоянной массой, мы получили из уравнения (2.10). Если исходить из уравнения (3.1), выражающего закон Ньютона, то, прибавляя к левой части произведение вектора скорости V на левую часть уравнения неразрывности (1.7), мы получим уравнение (2, 10), выражающее изменение количества движения в фиксированной точке пространства. Следовательно, используемая в 2 теорема об изменении вектора количества движения в фиксированном элементарном параллелепипеде для случая среды частиц с постоянными массами полностью эквивалентна закону Ньютона. Однако приводимая в 2 формулировка теоремы об изменении количества движения имеет преимущество по сравнению с обычной формулировкой закона Ньютона. Это преимущество заключается не только в том, что для вывода уравнения (2.10) не потребовалось понятия ускорения фиксированной частицы, но и в том, что рассуждения по выводу уравнения (2.10) оказались весьма простыми и сходными с рассуждениями по выводу уравнения (1.7) изменения масс. Следовательно, способ Эйлера изучения движения только в окрестности фиксированной точки пространства проведён последовательно не только при выводе уравнения неразрывности, но и при выводе основного уравнения движения среды.  [c.79]


Наибо.лее часто применяется в способе конечных объемов теорема об изменении количества движения (теорема импульсов). Поэтому остановимся на ней несколько подробнее. Эта теорема, как известно, заключается в том, что изменение количества движения какой-либо материальной системы равно импульсу приложенных к ней сил. Так как выделенный в жидкости объем деформируется (разные частицы в нем имеют разные скорости) и, следовательно, конечная форма объема (по истечении промежутка времени й1) не совпадает с начальной, то возникает трудность при вычислении изменения количества двин ения необходимо знать не только начальные и конечные скорости разных частиц, но и конечную форму выделенного объема. Однако, если движение является установившимся, то, как было показано Эйлером, эту трудность можно очень просто обойти.  [c.269]

Теорема об изменении количества даижения механической системы и ее применение к сплошной среде. Теорема Эйлера  [c.375]

Движение свободного твердого тела. Общим приемом составления уравнений движения свободного твердого тела является совокупное применение теоремы о движении центра инерции и динамических уравнений Эйлера, выражающих теорему об изменении главного момента количеств движения твердого тела в относительном движении по отношению к центру инерции.  [c.543]

Теорема об изменении главного вектора количеств движения материальной системы в приложении к сплошным средам (теорема Эйлера). Рассматривается объем жидкости (или газа), ограниченный боковой поверхностью трубы и двумя плоскими поперечными сечениями i и 2, перпендикулярными к стенкам трубы (рис. 9.7).  [c.225]

Тогда теорема об изменении главного вектора количеств движения материальной системы в приложении к сплошным средам (теорема Эйлера) в проекции на ось х примет вид  [c.230]

Уравнения Эйлера (14.7) выведены для случая, когда тело имеет одну неподвижную точку. Так как теоремы об изменении момента количеств движения относительно центра масс и неподвижной точки имеют одну и ту же форму, то динамические уравнения Эйлера (14.7) применимы и в данном случае (см. форм лы (9.9) и (9,45)),  [c.338]

Динамические уравнения Эйлера. Динамические уравнения Эйлера для твердого тела с одной неподвижной точкой выводятся из теоремы об изменении момента количества движения ( 12)  [c.83]


Удар твердых тел. Теорема об изменении момента количества движения относительно неподвижной точки, записанная для твердого тела в проекциях на жестко связанные с ним оси, имеет вид (уравнения Эйлера)  [c.101]

Таким образом, при установившемся движении вектор равнодействующей всех внешних сил, действующих иа жидкость в фиксированном объеме, равен геометрической разности количеств движения жидкости, вытекающей из этого объема и втекающей и него за единицу времени. В этом заключается теорема Эйлера об изменении количества движения ягидкого объема.  [c.56]

Теорема Эйлера ( Пуансо, Кориолиса, Дирихле, Гюйгенса, Гюльдена, Кёнига, Резаля, Даламбера - Эйлера, Кастильяно, Эйлера -Шаля, Кронекера - Капелли, Штейнера). Теорема живых сил (-кинетической энергии, количества движения, моментов, сохранения механической энергии. ..). Теорема о трёх центрах ( о движении центра масс, об изменении количества движения, об изменении момента количества движения, о работе сил, об изменении кинетической энергии, о моментах инерции...). Теоремы сложения.  [c.88]

Применительно к потокам жидкосте и газов более удобна несколько иная (гидродинамическая) форма теоремы об изменении количества движения, которую получил впервые Эйлер. Выведем уравнение количества движения в гидродинамической форме. Для этого выделим элементарную струйку (фиг. 7) и проведём два нормальных к её оси сечения 1 и 2. Разобём всю массу жидкости, заключённую в объёме 1—2, на большое число частей так, чтобы в пределах каждой из них, имеюш ей массу т, скорость движения т можно было счи-Фиг. 7. Элементарная струйка. тать постоянной, и установим связь  [c.34]

В своем трактате Общие принципы движения жидкостей (1755) Эйлер впервые вывел основную систему уравнений движения идеальной жидкости, положив этим начало аналитической механике сплошной среды. Гидродинамика обязана Эйлеру расширением понятия давления на случай движущейся жидкости. Стоит вспомнить слова Эйлера относительно того, что жидкость до достижения тела изменяет свое направление и скорость так, что, подходя к телу, протекает мимо него вдоль его поверхности и не прилагает к телу никакой другой силы, кроме давления, соответствующего отдельным точкам соприкосновения . В этих словах Эйлера, в противовес ньютонианским взглядам на ударную природу взаимодействия твердого тела с набегающей иа него жидкостью, выдвигается новое для того времени представление об обтекании тела жидкостью. Давление определяется не наклоном поверхности в данной точке к направлению набегающего потока, а движением жидкости вблизи этой точки поверхности. Эйлеру принадлежит первый вывод уравнения сплошности жидкости (в частном случае движения жидкости по трубе это уравнение в гидравлической трактовке было дано задолго до Эйлера в 1628 г. учеником Галилея Кастелли), своеобразная и ныне общепринятая формулировка теоремы об изменении количества движения применительно к жидким и газообразным средам, вывод турбинного уравнения, создание теории реактивного колеса Сег-нера и многое другое.  [c.20]

Путь универсализации методов, обобщения известных задач был главной чертой творчества Вариньона. По если его предшественники (Стевин, Галилей, Кеплер, Декарт) и современники (Гюйгенс, Пьютон, Лейбниц) искали универсальный принцип в мире философских идей, то он больше тяготел к универсализации математического аппарата механики. Особенно к адаптации идей математического анализа и дифференциальных уравнений. Основные идеи геометрической статики, принцип возможных перемещений , теорема об изменении количества движения, теорема об изменении кинетической энергии составляли основу механико-математических работ Вариньона. Это был пролог аналитической механики Эйлера-Даламбера-Лагранжа.  [c.204]

Теорема об изменении кинетической энергии или, как ее ранез называли, теорема живых сил была сформулирована Иваном Бернулли (1667— 1748) и Даниилом Бернулли (1700— 1782). Теорема об изменении момента количества движения установлена почти одновременно (1746) Эйлером и Даниилом Бернулли.  [c.5]


В основе всей динамики твердого тела лежат уравнения Эйлера, предложенные им в 1767 г. Уравнения эти определяют движение твердого тела около неподвижной точки и имеют место при произвольном движении твердого тела, так как самое общее движение твердого тела может быть представлено в виде суммы переносного поступательного движения, определяемого движением центра масс тела, и относительного движения тела вокруг центра масс. Центр масс твердого тела движется так, как если бы в нем была сосредоточена вся масса тела и приложены все действующие на тело силы. Относительное движение твердого тела вокруг центра масс определяется теоремой об изменении момента количества движения относительно осей Кёнига.  [c.368]


Смотреть страницы где упоминается термин Теорема Эйлера об изменении количества : [c.271]    [c.21]    [c.440]    [c.110]    [c.4]   
Аэродинамика Часть 1 (1949) -- [ c.0 ]



ПОИСК



Теорема Эйлера

Теорема об изменении главного вектора количеств движения материальной системы в приложении к сплошным средам (теорема Эйлера)

Теорема об изменении главного вектора количеств движения системы материальных точек в приложении к сплошным средам (теорема Эйлера)

Теорема об изменении количества

Теорема сб изменении количества движения механической системы и ее применение к сплошной среде. Теорема Эйлера

Эйлер

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте