Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молибден коррозия

Молибден и медь вводят в нержавеющие стали для повышения сопротивления коррозии в кислотах, поэтому стали типа Сг— Ni—Мо и Сг—Ni—Си— Мо будут рассмотрены в параграфе о кислотостойких сталях.  [c.497]

Наиболее эффективным способом борьбы с точечной коррозией является легирование добавками таких элементов, которые повышают устойчивость металла к точечной коррозии (Сг, N1) или препятствуют нарушению целостности пленки, например дополнительное легирование аустенитной стали молибденом, если агрессивной средой являются растворы хлоридов.  [c.162]


Рис. 195. Зависимость скорости коррозии титана и его сплавов с молибденом от концентрации НС1 при 60° С Рис. 195. Зависимость <a href="/info/39683">скорости коррозии</a> титана и его сплавов с молибденом от концентрации НС1 при 60° С
Нормальный электродный потенциал молибдена — 0,2 в. Высокая коррозионная стойкость молибдена наблюдается в растворах соляной, фосфорной и плавиковой кислот при комнатной температуре в присутствии окислителей скорость коррозии молибдена значительно возрастает. Со щелочами молибден не взаимодействует, но разрушается в присутствии окислителей. Молибден также имеет высокую коррозионную стойкость в расплавленных металлах.  [c.292]

Кобальт менее распространен и более дорог, чем никель. Поэтому в виде сплавов с хромом и молибденом (или вольфрамом) он применяется в тех случаях, когда обеспечивает практические преимущества перед аналогичными сплавами на основе никеля или железа. Сплавы кобальта лучше противостоят, например, фреттинг-коррозии, эрозии в быстро движущихся жидкостях и кавитационным разрушениям.  [c.369]

Нержавеющие стали по своей стойкости к общей коррозии занимают одно из первых мест среди конструкционных материалов. Вместе с тем они склонны к различным видам местной коррозии, таким, как питтинговая, межкристаллит-ная, щелевая коррозия и коррозионное растрескивание. Химический состав стали оказывает существенное влияние на ее склонность к локальной коррозии. Молибден — элемент, наиболее эффективно понижающий склонность нержавеющих сталей к питтингообразОванию и межкристаллитной коррозии.  [c.32]

Скорость коррозии (мм/год) биметалла сталь-молибден и чистого молибдена в кипящих кислотах  [c.105]

Ножевое поражение возникает на границе между швом и основным металлом в стабилизированных нержавеющих сталях, в том числе и легированных молибденом. К этому виду поражения могут вести несколько механизмов. Однако в настоящее время проблема ножевой коррозии стала несколько менее актуальной благодаря распространению сталей с особо низким содержанием углерода.  [c.119]

Скорость коррозии можно уменьшить путем создания сплавов, образующих на своей поверхности под действием агрессивной среды слой продуктов коррозии с высокими защитными качествами. Легирующие компоненты способствуют повышению защитных свойств поверхностного слоя, состоящего из продуктов коррозии, и устраняют возможность появления в нем внутренних напряжений (легирование конструкционных сталей молибденом, меди —цинком и алюминием).  [c.34]


Легирующие элементы низколегированных сталей при почвенной коррозии уменьшают начальную скорость образования коррозионных язв. Максимальная глубина язв также меньше, чем в нелегированных сталях. Хром и молибден повышают коррозионную устойчивость легированных сталей при наличии коллоидов. Из низколегированных сталей изготавливают конструкции для сооружений, находящихся в агрессивных почвах.  [c.91]

Согласно данным табл. 2.3, увеличение содержания хрома и никеля повышает стойкость стали к точечной коррозии. Действие других легирующих добавок различно. Так, молибден, рений и кремний препятствуют пит-  [c.27]

Сплавы системы никель — хром — молибден, типичным представителем которых является Хастеллой С, обладают наивысшей стойкостью к коррозии в условиях зоны прилива. Поскольку сплавы, отнесенные к классу I (см. табл. 27), особенно стойки к воздействию хлор-нона, то их можно использовать на среднем уровне прилива в тех случаях, когда необходимо обеспечить полное отсутствие коррозии.  [c.81]

Борьбу с этим очень опасным видом коррозии ведут а) применяя металлы, менее склонные к коррозионному растрескиванию (например, малоуглеродистую сталь, содержащую 0,2% С, с фер-рито-перлитной структурой) б) используя коррозионностойкое легирование (например, сталей хромом, молибденом) в) проводя отжиг деформированных металлов для снятия внутренних напряжений (например, отжиг деформированных латуней) г) создавая в поверхностном слое металла сжимающие напряжения (например, путем обдувки металла дробью или обкаткой роликом) д) тщательной (тонкой) обработкой поверхности для уменьшения на ней механических дефектов е) проводя обработку коррозионной среды (например, питательной воды котлов высокого давления) ж) вводя в электролит замедлители коррозии з) нанося защитные покрытия  [c.335]

В последнее время в условиях газовой коррозии находят при-менешк новые конструкционные металлы и сплавы, такие, как титан, цирконий, молибден, ниобий и др.  [c.143]

Ванадий, вольфрам, молибден могут вызвать сильное ускорение окисления стали при высоких температурах, что обусловлено легкоплавкостью и летучестью образующихся окислов или их эвгектик и мохет привести к катастрофической коррозии.  [c.18]

Наилучшей стойкостью против общей коррозии обладают никельсодержащие аустенитные стали. Обычно коррозионная стойкость сталей этого класса тем лучше, чем выше содержание никеля. Для создания оптимума противокоррозионных свойств аустенитный сплав должен быть закален в воде или на воздухе от температур 1050—1100 °С. Аустенитные сплавы, содержащие молибден (316, 316L, 317), обладают повышенной коррозионной стойкостью к щелевой коррозии.  [c.301]

На нержавеющих сталях, помещенных в морскую воду, глубокий питтинг развивается в течение нескольких месяцев начинается питтинг обычно в щелях или в других местах с застойным электролитом (щелевая коррозия). Склонность к локальным видам коррозии больше у мартенситных и ферритных сталей, чем у аустенитных. У последних склонность тем ниже, чем выше в них содержание никеля. Аустенитные стали 18-8, содержащие молибден (марки 316, 316L, 317), еще более стойки в морской воде, однако через 1—2,5 года и эти сплавы подвергаются щелевой и питтинговой коррозии.  [c.311]

Легирование никеля молибденом в значительной степени повышает его стойкость в восстановительных средах. Как в аэрированных, так и в деаэрированных кислотах эти сплавы имеют потенциалы коррозии более отрицательные, чем их Фладе-потен-циалы [4, 5], т. е. по определению 1 в гл. 5 их нельзя считать пассивными. Так, все коррозионные потенциалы никелевых сплавов с 3— 22,8 % Мо в насыщенном водородном 5 % растворе HjSO не отличаются более чем на 2 мВ от потенциала платинированного платинового электрода в том же растворе [4]. Несмотря на отрицательные значения коррозионного потенциала, сплав, содержащий, например, 15 % Мо, корродирует в деаэрированном 10 %  [c.361]

При одновременном легировании никеля молибденом и хромом получается сплав, стойкий в окислительных средах, благодаря присутствию хрома, и в восстановительных благодаря молибдену. Один из подобных сплавов, содержащий также несколько процентов железа и вольфрама (хастеллой С) устойчив против питтинговой и щелевой коррозии в морской воде (испытания в течение Ю лет) и не тускнеет в морской атмосфере. Однако сплавы такого типа, хотя и обладают повышенной стойкостью к иону С1 , в соляной кислоте корродируют быстрее, чем бесхромистые никелево-молибденовые сплавы.  [c.362]


Кобальт можно анодно запассивировать в 0,5 т растворе H2SO4. Для этого необходима минимальная плотность тока 5000 А/м , что в 14 раз больше соответствующей плотности тока для никеля [1 ]. Легирование кобальта хромом приводит к уменьшению плотности тока для пассивации сплава с 10 % Сг требуется плотность тока лишь в Ю А/м (1 мА/см ). Сплав, содержащий 10—12 % Сг, почти не подвергается коррозии в горячем и холодном 10 % растворе HNO3, однако в 10 % растворе H2SO4 или НС пассивации не происходит, и скорость коррозии достигает очень высоких значений. Легирование сплавов Со—Сг молибденом или вольфрамом ослабляет воздействие на них серной или соляной кислоты, но не азотной. i  [c.369]

Сплавы, обладающие более устойчивой пассивностью, особенно в присутствии ионов хлора, например нержавеющие хромоникелевые стали аустенитного класса, легированные молибденом, например сталь марки Х18Н12МЗТ, а также титан и хром обладают высокой стойкостью к щелевой коррозии. Благодаря высокой стойкости хрома можно рекомендовать хромовые покрытия для защиты от щелевой коррозии.  [c.207]

Сплавы, обладающие более устойчивой пассивностью, особенно в присутствии ионов хлора, например нержавеющие стали, легированные никелем и молибденом (Х18Н12МЗТ), а также высокохромистая сталь марки Х28 и особенно титан и хром, имеют более высокую стойкость против щелевой коррозии, чем нержавеющие стали марок Х17, Х18Н9.  [c.14]

Известно, что силицидный слой на молибдене с образующейся жаростойкой фазой дисилицида молибдена Мо312 надежно защищает молибден от газовой коррозии при температурах до 1700° С [1].  [c.42]

Рис. 74. Скорость коррозии танталовых сплавов в зависимости от концентрации кипящей Н, SO4 [54] а - сплавы с ниобием б - с титаном в - с ванадием г — с молибденом, вольфрамом и сшрко-нием Рис. 74. <a href="/info/39683">Скорость коррозии</a> <a href="/info/165437">танталовых сплавов</a> в зависимости от концентрации кипящей Н, SO4 [54] а - сплавы с ниобием б - с титаном в - с ванадием г — с молибденом, вольфрамом и сшрко-нием
Высокая стойкость молибдена обусловлена образованием на его поверхности защитной пленки. Кинетика растворения молибдена характеризуется кривой, интенсивность подъема которой постоянно уменьшается (рис. 82), т.е. соответствует кривой типа 1 на рис. 50, что свидетельствует об образовании защитной пленки. Продолжительность испытаний в кипящих кислотах была принята равной 96 ч, в закрытых контейнерах - 24 ч. На рис. 83 ][1редставлены результаты испытаний молибдена в серной кислоте различной концентрации. Видно, что при концентрации кислоты до 50-60% молибден устойчив против коррозии, а в кислотах более высоких концентраций скорость его коррозии резко увеличивается.  [c.89]

По коррозионной стойкости Мо значительно превосходит высоконикелевые сплавы и титан. Согласно приведенным выше данным, в Н2 SO4, как и в дрзггих кислотах (НС1, H2SO4), по коррозионной стойкости молибден занимает промежуточное положение между ниобием и танталом (см. рис. 41, 42). Необходимо отметить, что ни различие в химическом составе молибденового сплава, ни технология его изготовления (вакуум-плавлен-ный, спеченный), ни структурное состояние (наклепанный, рекристаллизованный) не влияют на скорость общей коррозии, определяемую весовым методом. В связи с этим все промышленные сшшвы, если их рассматривать как коррозионностойкие, можно объединить под общим названием — молибден. Несмотря на одинаковую скорость общей коррозии,  [c.90]

Большую опасность представляет питтинговая (точечная) коррозия, характерная для пассивного состояния металлов. Питтинговая коррозия протекает в растворах при наличии способствующих пассивации окислителей (например, кислорода) и депассива-торов (ионов хлора и др.). Дно пнттинга является анодом и корродирует с большой скоростью, так как остальная намного большая поверхность металла запассивирована и катодна по отношению к ииттингу. Стойкость металлов к питтинговой коррозии зависит от природы металла, состояния его поверхности, состава и те.мпера-туры электролита, активности окислителя и депасснватора. Особенно склонны к питтинговой коррозии коррозионно-стойкие стали. Повышает стойкость коррозионно-стойких сталей к питтинговой коррозии легирование молибденом и некоторые металлургические и технологические мероприятия.  [c.8]

Стали и чугуны — наиболее широко используемые сплавы на железной основе. Содержание углерода в сталях не превышает 1,7 % в чугунах оно может доходить до 4 %. Таким образом, эти материалы в наибольшей степени подвержены коррозии под напряжением. Нелегированные железоуглеродистые сплавы используются в основном для изготовления строительных конструкций, а также различных аппаратов и емкостей. Для большей коррозионной стойкости эти сплавы легируют хромом, молибденом, кремнием, никелем, алюминием и другиАш элементами.  [c.38]

Третий метод уменьшения скорости газовой коррозии заключается в защите поверхности металла специальными термостойкими покрытиями термодифузионными железоалюминиевыми или железохромовыми покрытиями (процессы нанесения этих покрытий известны под названием алитирование и термохромирование ), металлокерамическими покрытиями, или керметами, металлоокисными покрытиями, для получения которых в качестве неметаллических компонентов применяют тугоплавкие окислы, например AI2O3, MgO, и соединения типа нитридов и карбидов. Металлическими компонентами служат металлы группы железа, хром, вольфрам и молибден.  [c.14]

В средах хлоридов коррозионное растрескивание возникает в нейтральных растворах хлоридов при температуре выше 80 С. Повышение стойкости против язвенной и щелевой коррозии обеспечивается дополнительным легированием стали никелем и молибденом (сталь 08X17HI3M2T). Однако и в этом случае надежная работа деталей из этой стали в морской воде возможна при обеспечении катодной защиты протекторами из углеродистой стали. Повышение стойкости против коррозионного растрескивания обеспечивается дальнейшим увеличением содержания хрома и никеля до 40—50 % (стали типа Х32Н45 и др.).  [c.70]


Рис. 9.4. Скорость коррозии к образцов перлитной стали, легировапной молибденом, в воде высокой чистоты в зависимости от дозы кислорода. Рис. 9.4. <a href="/info/39683">Скорость коррозии</a> к образцов <a href="/info/101255">перлитной стали</a>, легировапной молибденом, в воде высокой чистоты в зависимости от дозы кислорода.
Сплавы на основе никеля, содержащие хром, железо, молибден и другие добавки, корродируют в зоне ила примерно так же, как и в неподвижной морской воде на больших глубинах (см. табл. 31). Например, сплав 80Ni —20Сг (нихром) подвергался щелевой коррозии как в иле, так и в воде над ним. Такие сплавы, как Инконель 625 и Хастеллой С, совсем не испытывали коррозии в зоне ила. На сплаве Инколой 825 наблюдалась случайная щелевая коррозия в придонных слоях воды и в иле [43].  [c.91]

Описанный механизм согласуется с основными фактами, известпи-Mti о щелевой коррозии титана и его сплавов. Коррозия этих металлов возникает только в достаточно изолированных щелях при определенных соотношениях температуры и концентрацпи солевого раствора. На рпс. 63 приведены данные, позволяющие приближенно определить область температур и концентраций, при которых возможна щелевая коррозия титана в реальных условиях. Коррозия пелегированиого титана (Ti—50 А) вероятна только при температурах порядка 120°С, а сплава Ti—0,2Pd —не менее 150 °С. Более высокую стойкость сплава объясняют обогащением внутренней поверхности щели палладием на начальной стадии коррозии, после чего катодная пассивация металла в щели протекает более легко [84]. Сплавы, содержащие молибден пли никель, также обладают повыщенной стойкостью к щелевой коррозии [82].  [c.129]


Смотреть страницы где упоминается термин Молибден коррозия : [c.9]    [c.291]    [c.416]    [c.420]    [c.73]    [c.151]    [c.226]    [c.284]    [c.147]    [c.362]    [c.71]    [c.19]    [c.20]    [c.76]    [c.50]    [c.91]    [c.90]    [c.69]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.13 ]



ПОИСК



Влияние хрома и молибдена на питтинговую коррозию нержавеющих сталей

Коррозия бериллия молибдена

Коррозия металлов например: Вольфрам Молибден Ниобий Тантал

Молибден

Молибденит



© 2025 Mash-xxl.info Реклама на сайте