Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерение твердости вдавливанием на микротвердость)

Измерение твердости вдавливанием алмазной пирамиды (испытания на микротвердость) 36  [c.706]

В практике исследований микротвердости применяют прибор ПМТ-3 как наиболее совершенный (рис. 129). Его используют для испытания материалов на твердость вдавливанием индентора под нагрузкой от 2 до 200 г. В качестве индентора применена алмазная пирамида с квадратным основанием и углом при вершине между противолежащими гранями 136°. Измерения окулярным микрометром на приборе ПМТ-3 можно вести с точностью до 0,15 мкм.  [c.243]


При решении таких задач пользуются прибором ПМТ-3 для испытания металлов на микротвердость. Принцип действия прибора основан на вдавливании под нагрузкой от 2 до 200 гс алмазной четырехгранной пирамиды и последующем измерении отпечатка с помощью микроскопа. Пользуясь таблицей, по длине диагонали отпечатка находят значения твердости.  [c.264]

Испытания на микротвердость. Стандартные методы определения твердости по принципу статического вдавливания наконечника определенной формы и размеров при нагрузках от 5 до 3000 кГ не позволяют определять твердость отдельных структурных составляющих металлов, металлических покрытий и др., так как стальной шарик или алмазный конус, вдавливаясь, занимает значительную площадь. Между тем измерение твердости микроскопически малых объемов металла имеет большое значение для решения целого ряда технологических и научных задач.  [c.53]

Испытания на микротвердость. Стандартные методы определения твердости по принципу статического вдавливания наконечника определенной формы и размеров при нагрузках от 5 до 3000 кГ не позволяют определять твердость отдельных структурных составляющих металлов, металлических покрытий и др., так как стальной шарик или алмазный конус, вдавливаясь, занимают значительную площадь. Между тем измерение твердости микроскопически малых объемов металла имеет большое значение для решения целого ряда технологических и научных задач. Эти испытания производятся вдавливанием алмазной пирамиды с углом при вершине 136° при нагрузках 2—200 Г (фиг. 23). Прибор снабжен микроскопом с окулярным микрометром и установкой для фотографирования микроструктур и отпечатков. Общее увеличение микроскопа при окуляре 15> — 485 раз. Поверхность отпечатка вычисляется. по длине его диагонали с . Если Р выразить в граммах, ас1 — амикронах, то число твердости Н можно определить по следующей формуле  [c.46]

Металлы. Метод испытания на микротвердость вдавливанием алмазной пирамиды. Стандарт содержит основные определения и обозначения, условия измерения твердости, измерение твердости, контроль прибора, таблицы чисел твердости в кГ/м.ч при испытании на микротвердость вдавливанием алмазной пирамиды при разных нагрузках.  [c.503]

Для измерения микротвердости при повышенных температурах в одном из исследовательских центров компании Дженерал Электрик (США) разработана установка GE —NSP, на которой испытания можно проводить в интервале температур от 10 до 1400 " С. Установка рассчитана на дистанционное управление, что позволяет исследовать на ней радиоактивные материалы. Твердость измеряют при нагрузках до 1 кгс, для определения нагрузки используют балку постоянной жесткости с тензодатчиками. Регулирование температуры, нагрузки, времени выдержки индентора под нагрузкой, а также процесс вдавливания индентора производятся автоматически.  [c.114]


Измерение микротвердости [11, /2]. Дополнительные данные о природе и свойствах различных структурных составляющих сталей и сплавов по.лучают путем измерения микротвердости. Для этой цели используют специальные приборы (обычно ПМТ-3 и ПМТ-5) или приспособления к световым микроскопам. Наиболее распространенный метод измерения микротвердости основан на измерении линейной величины диагонали отпечатка д от вдавливания алмазной пирамиды с углом между гранями 136 под нагрузкой от 0,02—2Н. В зависимости от твердости исследуемой фазы и величины нагрузки диагональ отпечатка может изменяться от нескольких до нескольких сот микрометров, что позволяет изучать структурные составляющие размером до 10 мкм.  [c.30]

Фторфлогопиты в зависимости от химического состава имеют плотность от 2600 до 3000 кг/м . Твердость нелегированного фторфлогопита (в дальнейшем фторфлогопита), измеренная на приборе ПТМ-3 по методу вдавливания алмазной пирамидки, составляет 12 МПа, а легированных титаном и ванадием— соответственно 14 и 21 МПа. Микротвердость природного мусковита и флогопита, измеренная в идентичных условиях, имеет соответственно 11 и 6 МПа.  [c.126]

Большое значение имеет определение твердости отдельных структурных составляющих сварного шва — микротвердости. Это позволяет оценить полноту прохождения многих металлургических процессов, происходящих при сварке. Сущность метода заключается во вдавливании стандартной алмазной пирамиды с углом прн вершине 136°, при нагрузке 0,02...2 Н, определении площади поверхности отпечатка и делении величины нагрузки на эту плотность. Результаты обозначаются в НМ — единицах микротвердости. Прибор для измерения микротвердости ПМТ-3 снабжен микроскопом с подвижной шкалой, позволяющим точно установить наконечник и произвести последующие измерения отпечатка.  [c.167]

По тому же принципу — измерения длины диагонали отпечатка, полученного от вдавливания алмазной пирамиды, — работает прибор для определения микротвердости типа ПМТ-2 и ПМТ-3. Приборы эти служат для определения твердости очень малых участков, например отдельных структурных составляющих на микрошлифах.  [c.97]

Кроме этих основных приборов для испытания на твердость, получивших значительное распространение при контроле в заводской практике и при работе в исследовательских лабораториях, за последние годы появились приборы для измерения микротвердости (т. е. твердости металла в малых объемах) путем вдавливания наконечника под небольшими нагрузками. Ниже помещено описание приборов ИМАШ (Института машиноведения Академии наук СССР), сконструированных для этих целей.  [c.136]

Область испытания на твердость значительно может быть расширена за счет применения метода микротвердости . Под последним подразумеваются характеристики твердости, определяемые методом вдавливания индентора при малых нагрузках и получаемые при малых микроскопических отпечатках. Метод микротвердости требует увеличения точности формы и размеров индентора и применения более совершенных и точных измерений отпечатков или глубин внедрения с помощью специальных оптических и тензометрических средств. Микротвердость расширяет область изучения свойств материалов, особенно в связи с физической и структурной неоднородностью.  [c.166]

Значительное влияние на результаты испытаний твердости оказывает состояние поверхности измеряемого материала. Если поверхность неровная — криволинейная или с выступами, то отдельные участки в различной степени участвуют в сопротивлении вдавливанию и деформации, что приводит к ошибкам в измерении Чем меньше нагрузка для вдавливания, тем более тщательно должна быть подготовлена поверхность. Она должна представлять шлифованную горизонтальную площадку, а для измерения микротвердости — полированную (в этом случае при изготовлении шлифа нельзя допускать наклепа в поверхностном слое).  [c.170]

Прибор для измерения микротвердости конструкции М. М. Хрущева и Е. С. Берковича основан на вдавливании алмазной пирамиды под нагрузками от 5 до 200 г. После вдавливания алмазной пирамиды в испытуемый объект и выдержки в течение 5—10 сек. измеряется под микроскопом величина диагонали отпечатка. Число твердости, получаемое в единицах Яд, определяется по формуле  [c.40]


Способом вдавливания определяют твердость (макротвердость) и микротвердость. При измерении твердости (макротвердости) в исследуемый материал вдавливается тело, проникающее на сравнительно большую глубину, зависящую от прилагаемой нагрузки и свойств металла. Часто вдавливаемое тело имеет значительные размеры (например, стальной шарик диаметром 10 мм), в результате чего в деформируемом объеме оказываются представленными все фазы и структурные составляющие сплава, количество и расположение которых характерны для измеряемого материала. Измеренная твердость в этом случае будет характеризовать твердость всего испытуемого материала.  [c.25]

ТВЕРДОСТЬ — обычно сопротивление материала местной пластич. деформации, возникающей при внедрении в него более твердого тела. Т. может определяться при статич. и динамич. нагружении (см. Испытание на твердость) при комнатной и повышенных темп-рах (см. Твердость горячая). Независимо от метода определения Т. обозначается символом Н с соответствующим индексом, указывающим на метод определения. Распространенность испытаний па Т. объясняется простотой методов, не требующих сложных лабораторных установок возможностью контролировать материал, не изготовляя спец. образцов, в деталях, не нарушая их целостности, и определять Т. в малых объемах (см. Испытание на микротвердость). Наибольшее распространение получили методы определе-пия Т. при статич. вдавливании инденто-ра — методы Бринелля (см. Твердость по Бринеллю), Роквелла (см. Твердость по Роквеллу) и Виккерса (см. Твердость по Виккерсу). Числа твердости по Брипеллю НВ и по Виккерсу HV соответствуют величине среднего уд. давления на поверхность отпечатка и близки между собой до значений НВс 400 кг мм на более прочных материалах измерение Т. стальным шариком может привести к его деформации, увеличению диаметра отпечатка и соответственно получению значений НВ ниже действительных (рис. 1). Для измерения Т. на высокопрочных сталях и сплавах приме-  [c.289]

Микротвердость характеризует сопротивление материала пластическому вдавливанию твердого наконечника (индентора). В практике измерений микротвердости наиболее широко применяется алмазная квадратная пирамида с углом в вершине 136° [13, 14, 15]. Испытания на микротвердость следует проводить в тех случаях, когда по техническим условиям нельзя измерять твердость макрометодами. Они рекомендуются для определения микротвердости отдельных структурных составляющих сплавов тонких поверхностных слоев, покрытий, тонких листовых материалов (фольги) для определения неоднородности микротвердости на отдельных участках деталей, для контроля мелких деталей и микрообразцов. Испытания микротвердости дают возможность косвенно оценивать хрупкость поверхностных слоев и некоторых материалов (стекол, минералов и др.) путем сопоставления длин диагоналей отпечатков, при которых в углах отпечатков начинают появляться трещины. В качестве харак-  [c.171]

Твердость основного металла определяют по ГОСТ 9012—59, ГОСТ 9013—59 или ГОСТ 2999—59, а сварного соединения по ГОСТ 6996—66 на шлифах поперечного сечения шва по линиям, параллельным границе проплавления основного металла, а также пересекающим ось симметрии шва. Для измерения твердости используют приборы типа Виккерса (ГОСТ 2999 — 59), Бринеля (ГОСТ 9012—59 ) или Роквелла (ГОСТ 9013—59), твердомеры микротвердости вдавливанием алмазной пирамиды (ГОСТ 9450—60).  [c.109]

Измерение твердости покрытий сопряжено с существенными трудностями, связанными, в частности, с влиянием твердости основного металла, особенно при небольших толщинах покрытия. Наиболее точным и удобным методом измерения твердости является метод статического вдавливания алмазной пирамидки под малыми нагрузками (от 0,02 до 2 Н), или так называемый метод измерения микротвердости. Измерения проводят приборами ПМТ-2, ПМТ-3. Микротвердость определяют путем деления нагрузки Р (Н) на условную площадь боковой поверхности Р полученного отпечатка Н = 1,854Я/ , где й — длина диагонали отпечатка после снятия нагрузки, мм.  [c.631]

Наиболее простым методом испытания свойств является измерение твердости. Твердостью называют свойство материала оказывать сопротивление деформации в поверхностном слое при местных контактных воздействиях. Различают методы определения твердости по Брпнелю (по диаметру отпечатка шарика) по Роквеллу (по глубине вдавливания алмазного конуса или закаленного шарика) по Виккерсу (для деталей малой толщины или тонких поверхностных слоев твердость определяют по диагонали отпечатка алмазной пирамиды). Схемы этих методов приведены на рис. 47. В некоторых случаях определяют микротвердость отдельных участков металла. Этот метод используют для измерения твердости отдельных зерен или очень тонких слоев.  [c.87]

Схема прибора типа ПМТ-2 Института машиноведения Академии наук СССР для измерения микротвердости изображена на фиг. 34. Образец О укладывается на вращающийся предметный столик 1 под объектив 2 вертикального микроскопа, на тубусе которого закреплен держатель 3 с вмонтированными в нем опак-иллюминатором 4 и корпусом механиз.ма для вдавливания наконечника. Наметив под микроскопом участок для измерения твердости, поворотом столика перемещают образец в положение О, в котором выбранный участок оказывается под алмазным наконечником 5. Вдавливание пирамиды осуществляется (при вращении на 180° ручки 6 арретирующего устройства) под действием грузика Р, помещаемого на нагрузочную площадку 7. Нагрузка может быть выбрана в пределах 2—200 Г. Сняв нагрузку, обратным поворотом ручки 6 снова перемещают образец под объектив микроскопа и окуляр-микро-  [c.18]

Для оценки механических свойств аморфных сплавов широкое распространение получил метод измерения лшкротвердости. Существует методика корректной оценки прочностных и пластических свойств, в основе которой лежит классический метод измерения микротвердости [12.16]. Для того, чтобы полностью исключить )злияние геометрии и качества поверхности ленточных образцов, целесообразно измерять микротвердость на торцевой поверхности лент (рис. 12.14). Твердость, выраженная в мегапаскалях, представляет собой сопротивление материала большим пластическим деформациям при вдавливании идентора и находится, как показано, в прямой связи с характеристиками прочности. На рис. 12.15 приведены результаты одновременного и независимого измерения величины микротвердости HV (фактически твердости по Виккерсу) и величине при одноосном растяжении для ряда различных по составу аморфных сплавов па основе Fe, Со и Ni. Наблюдается четкая линейная зависимость HV КОт, где К =  [c.173]


Микротвердость — это твердость отдельных участков структуры металла на микрошлифе. Площадь участка, на котором измеряется микротвердость должна быть не менее 5 мкм . Определение микротвердости проводится стандартной алмазной пирамидой (с углом при вершине 136°) с нагрузками 0,019—0,980 Н. Величину микротвердости вычисляют по такой же формуле, как твердость по Виккерсу и обозначают НМ. Прибор для определения микротвердостн представляет собой металлографический микроскоп с механизмом для вдавливания алмазной пирамиды и устройством для замера отпечатков с точностью до десятых долей микрона. Поверхность для измерения микротвердости приготавливают так же, как для металлографических исследований. На приборе ПМТ-3 нагружение образца и снятие нагрузки осуществляются вручную. В новых приборах ПМТ-5 предусмотрено автоматическое нагруженйе, что значительно повышает достоверность получаемых результатов.  [c.59]


Смотреть страницы где упоминается термин Измерение твердости вдавливанием на микротвердость) : [c.28]    [c.982]    [c.75]    [c.92]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.2 , c.36 ]



ПОИСК



Измерение твердости вдавливанием

Измерение твердости вдавливанием алмазной пирамиды (испытания на микротвердость)

Микротвердость

Микротвердость — Измерение

Твердость Измерение

Твердость на вдавливание



© 2025 Mash-xxl.info Реклама на сайте