Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь в речной воде

На скорость коррозии стали в речной воде определяющее влияние оказывают следующие параметры [14] тип стали, химический состав, температура и pH воды, индекс насыщения, скорость потока воды, характер контакта воды с поверхностью металла. Понятно, что все эти параметры непостоянны и установить их свободное влияние во времени на коррозию трудно. Обычно содержание ионов СГ и S04", активирующих коррозионный процесс, в речной воде не выше 50 мг/л, однако в некоторых водоемах оно превышает это содержание. Коррозия стали в такой воде возрастает в 4—5 раз.  [c.16]


Все сказанное выше относится к углеродистым сталям нержавеющие стали в речных водах при температурах до 100 °С практически не подвергаются коррозии.  [c.16]

Скорость движения потока — не менее важный фактор коррозионного процесса стали в речной воде. Поток доставляет кислород к корродирующей поверхности и может уносить продукты коррозии, накапливание которых тормозит процесс коррозионного разрушения. Интенсивное снабжение кислородом катодных участков углеродистой стали активизирует процесс. Такое же влияние способен оказывать и малый приток кислорода при медленном ламинарном движении потока воды, если при этом происходит образование пар дифференциальной аэрации [29, с. 92]. При высокой турбулизации потока речной воды к поверхности стали транспортируется количество кислорода, достаточное для частичной пассивации стали и снижения скорости коррозии.  [c.49]

Рис. 5. Зависимость скорости коррозии стали в речной воде от концентрации кислорода Рис. 5. Зависимость <a href="/info/39683">скорости коррозии</a> стали в <a href="/info/39769">речной воде</a> от концентрации кислорода
Основной коррозионный агент в растворах электролитов — растворенный кислород, непосредственно участвующий в реакциях образования продуктов коррозии. Зависимость скорости коррозии стали в речной воде ог концентрации кислорода показана на рис. 5.  [c.21]

В ряде случаев коррозия стальных конструкций, соприкасающихся с водой, можно значительно ослабить или совсем прекратить, если применить электрохимическую защиту. Вопросам теории и практики электрохимической защиты, в частности катодной, посвящен ряд специальных руководств [111,22 111,23]. Для определения величины защитного потенциала стали в данных конкретных условиях необходимо знать скорость коррозии и величину стационарного электродного потенциала стали в этих же условиях [111,24]. В речной воде защитный потенциал для железа по нормальному водородному электроду при температуре 20° С составляет —0,65 0,70 в, при температуре 90° С он равен — 0,85 в. При этом  [c.106]


Хром, добавленный к железу, существенно изменяет его свойства. Уже незначительное его содержание (до 3%) уменьшает глубину язв при коррозии в речной воде. В случае морской воды хром сокращает как общее уменьшение веса, так и глубину язв, например по сравнению со сталью с 0,25% С [201]. Значительное улучшение наблюдается только при содержании хрома более 16% наступает надежная пассивация с облагораживанием потенциала.  [c.70]

В кислых растворах, а также в растворах солей с высокой концентрацией ионов хлора (морская вода), медистое железо и сталь не имеют таких преимуществ по сравнению с обычными, как в атмосфере или в речной воде.  [c.72]

В атмосфере, исключая сильно загрязненную, промышленную и морскую, нержавеющие железохромистые стали можно применять, не защищая их тем или иным способом. Они также устойчивы в речной воде. В растворах солей, содержащих значительные количества ионов хлора, как например, морская вода, они не вполне устойчивы, хотя значительно устойчивее обычной углеродистой стали. Эти сплавы устойчивы в растворах щелочей и аммиака.  [c.74]

Для дуговой резки стали в речной и морской воде  [c.233]

Предел коррозионной выносливости сталей в пресной воде из буровой скважины 1 и в солоноватой речной воде 2  [c.610]

Имеются указания на исключительную стойкость азотированной стали против коррозионной усталости в струе пара. Предел коррозионной выносливости в струе пара для азотированной стали составляет 68 /о от предела выносливости, полученного при испытаниях в речной воде на базе 17-10 циклов [30]. Кроме того, азотированная сталь малочувствительна к надрезу вследствие высоких сжимающих напряжений в азотированном слое. Этим можно объяснить, частично, почему некоторые стали лучше сопротивляются коррозионной усталости после обкатки роликами [31].  [c.618]

Сталь обладает высокой стойкостью в морской и речной воде, в щелочных растворах о концентрацией 1—20 % и органических веществах (сырая нефть при 20—220°С) хорошей стойкостью в азотной и уксусной кислотах удовлетворительной стойкостью в ортофосфорной кислоте и плохой стойкостью в соляной U серной кислотах.  [c.479]

В настоящее время, когда наши реки в большинстве своем зарегулированы плотинами, в силу чего уменьшились скорости течения, процесс перемешивания стоков с речной водой стал менее интенсивным это вместе с количественным увеличением сбросных сточных вод делает процесс самоочищения рек малоэффективным, а потому не может быть рекомендован.  [c.9]

Углеродистые стали составляют примерно 90% от общего объема производства черных металлов. По равномерной коррозии углеродистые стали не классифицируются. Скорость равномерной коррозии в нейтральных средах примерно одинакова. В атмосфере, почве, морской и речной воде при полном погружении с естественной конвекцией, т. е. в природных условиях, углеродистые стали корродируют со скоростью нескольких десятых миллиметра в год. Однако при наличии электрических контактов в условиях принудительной циркуляции воды коррозия может протекать очень быстро, и поэтому углеродистая сталь для таких систем должна иметь защиту, рассчитанную на длительное действие.  [c.29]

Здесь нет возможности конкретно перечислить все агрессивные среды, которые вызывают межкристаллитную коррозию. Однако интересно рассмотреть отдельные среды, в которых разрушение носит специфический характер или же связано с особыми условиями. В качестве такого примера могут служить речная и дистиллированная вода, вызывающая межкристаллитную коррозию в высоколегированных сталях в при-сутствии кислорода и ионов хлора.  [c.99]

В том случае, когда вода движется по стальным трубам, скорость коррозии постепенно снижается из-за снижения концентрации кислорода. В турбулентном потоке речной воды к поверхности стали подводится количество кислорода, достаточное для того, чтобы обеспечить пассивацию стали и уменьшить скорость коррозии.  [c.10]


Так как растворенный в воде кислород повышает скорость коррозии стали, один из способов предотвращения коррозии состоит в дегазации охлаждающей воды. Однако в Великобритании такой способ применяют довольно редко. Полная дегазация в данном случае не требуется, и вполне возможно, что любое уменьшение содержания в воде кислорода приведет к уменьшению общей коррозии стали, но это может усилить местную точечную коррозию. В открытых оборотных системах применение сульфита натрия в больших количествах практически исключено из-за его высокой стоимости, а также из-за накопления в воде сульфата натрия, который является продуктом окисления сульфита. Если воду в прямоточной системе подвергают дегазации, то перед выпуском может потребоваться ее аэрация, так как в противном случае она способна вызвать обескислороживание речной воды или нарушить процесс обработки сточных вод.  [c.270]

Оборудование химических производств, контактирующее с нейтральными водными средами, преимущественно изготавливается из сталей различных классов, латуней (включая мышьяковистые), сплавов алюминия и титана, мельхиора. Основными видами оборудования, подвергающегося коррозии, являются всевозможные технологические аппараты, трубопроводы, соответствующая арматура и контрольные приборы, теплообменники и охладители, теплоэнергетическое оборудование заводских котельных и систем горячего водоснабжения, расходные и аккумуляторные баки и другие емкости, отстойники, фильеры, поглотители и абсорберы, насосы и др. Следует учитывать, что в системах охлаждения, оборудование которых эксплуатируется при температурах до 60 °С, используется преимущественно морская и речная вода в оборудовании, работающем при более высоких температурах, особенно в условиях парообразования, а также в адсорберах применяется в основном химически очищенная и обессоленная вода. В аппаратах, использующих воду Б качестве растворителя и реакционного агента, применяется химически обессоленная вода или вода высокой степени чистоты.  [c.10]

Возможность и скорость коррозии сталей, так же как и других металлов и сплавов, будут определять следующие параметры коррозионной системы речная вода — металл а)химический состав и индекс насыщения воды б) природа металла или тип-стали и сплава в) температура на границе контакта вода — металл г) pH воды д) гидродинамические параметры (относительная скорость движения среды, характер контакта металли-  [c.46]

Для оценки коррозионной агрессивности речной воды в отношении углеродистой стали до 55 °С со скоростью движения до 2,0 м/с можно использовать формулу  [c.49]

Для количественной оценки коррозии стали в жестких речных водах с температурой от 20 до 80°С справедлива формула [21]  [c.50]

Таким образом, химические методы подготовки воды позволяют практически полностью предупреждать возникновение солевых отложений на поверхностях оборудования. Коррозионная же агрессивность этих вод по отношению к углеродистой стали выше, чем вод речных. Кислородная и углекислотная коррозия стали в умягченных и обессоленных водах развивается быстрее, чем в жестких водах. Выбор конструкционных материалов оборудования, эксплуатирующегося в контакте с умягченными и обессоленными водами, зависит от степени подготовки воды.  [c.81]

Ингибитор коррозии железа и стали в воде (морской и речной) [1108]. При концентрации 100 ч. на 1 млн. ч. для мягкой стали z = 99%.  [c.101]

Коррозионная усталость. Коррозионная среда отрицательно влияет на усталостную прочность практически всех конструкционных металлов и сплавов. Так, в речной воде, являющейся сравнительно малоагрессивной средой, усталостная прочность нержавеющих сталей снижается на 10— 30 %, углеродистых и легированных конструкционных сталей —в 1,5—2 раза, высокопрочных алюминиевых сплавов —в 2—3 раза. Особенно сильное воздействие среды наблюдается при наличии концентраторов напряжений. Как правило, при испытании в коррозионных средах не наблюдается физический предел выносливости, поэтому при большом числе циклов (10 —10 ) нагружения несущая способность образца может оказаться очень низкой. Это заставляет значительно увеличивать запасы прочности конструкций, подвергающихся циклическим нагрузкам и работающих в коррозионной среде.  [c.158]

Скорость коррозии железа можно значительно понизить, если ввести в раствор ингибиторы— замедлители коррозии. Обстоятельное исследование действия ингибиторов в нейтральных средах было проведено И. Л. Ро-зенфельдом [111-20]. Не останавливаясь детально на их применении, можно отметить, что введение в речную воду силикатов, нитритов, хроматов и бихроматов в количестве 1—2 г л практически предотвращает коррозию железа при температурах от 20 до 80° С. Для ядерной энергетики в ряде случаев желательно применять замедлители, которые бы под действием облучения не давали долгоживущие радиоактивные изотопы. Этому условию отвечает нитрит аммония. Введение его в речную воду в количестве 10 г/л уменьшает скорость коррозии углеродистой стали при температуре 90° С с 7,2 г/м сут до 0,05 г/м сут. Коррозия при этом становится равномерной. Следует, однако, отметить, что при высокой температуре нитрит аммония разлагается, и для надежной защиты стали его необходимо добавлять в воду периодически. С уменьшением концентрации ингибитора ниже определенного предела скорость коррозионного процесса увеличивается и появляются язвы [111,20]. Из результатов испытаний, проводимых в автоклавах.  [c.105]


Протекторная зашита стальных и железных конструкций широко используется в морской воде или растворах солей в зоде и мало пригодна в речной воде. Протекторами для железа и стали являются цинк, алюминий и магний, а также сплавы на основе этих металлов, например сплав магния с 6% А1 и 3% 2п, сплак алюминия с 5% 2п и сплав цинка с 5% А1. Из указанных протекторов наиболее эффективным является магниевый сплав, потенциал которого в морской воде мало изменяется и равен—1,2 в. Худшие результаты дают алюминий и его сплавы, так как при этом возникает более высокий потенциал (—0,67 в), который в дальнейшем еше повышается вследствие поляризации через некоторое время такой протектор может вообще прекратить свое действие. Цинк и цинковые сплавы занимают промежуточное положение. На цинковом сплаве в морской воде устанавливается потенциал, равный — 0,78 в, который с течением времени облагораживается и приближается к потенциалу железа, но не так близко, как алюминий.  [c.62]

Исследованиями последних лет установлено, что особенно сильно понижается усталостная прочность конструкций в морской и речной воде при наличии большого содержания ионов хлора. Предел выносливости углеродистых сталей марок Ст. 3 и М16С, применяемых при изготовлении металлоконструкций гидротехнических сооружений, эксплуатируемых в речных водах, снижается по сравнению с пределом выносливости на воздухе до двух раз, а в морской воде — до четырех и более раз.  [c.102]

Нами было исследовано влияние добавок сточных вод производства жидкого отекла в речную воду на коррозионное поведение металлов з ранее рассмотренных условиях. Оказалось, что на свехезачищенных образцах чугуна углеродистой стали при вводе стоков (концентрация 0,2 г/л Е пеоесчете на ннблюдается высокий защитный эффект. Аналогич-  [c.147]

В речной воде, атмосфере, разбавленной азотной кислоте при комнатной температуре и т.д. стали с небольшим содержанием хрома находятся в активном состоянии. При увеличении содержания хрома до 127о, что соответствует правилу Таммана п/8, хромистая сталь в указанных средах переходит в пассивное состояние электродный потенциал резко облагораживается, а скорость коррозии падает. При дальнейшем повышении содержания хрома способность стали пассивироваться усиливается.  [c.131]

Слой нитрида и его влияние на коррозионную усталость. Многообещающим методом защиты против коррозионной усталости стали является образование нитридного слоя (азотизация). Пленка нитрида, получаемая преимущественно на специальных сталях для азотизации, содержащих алюминий, хром и часто молибден, первоначально нашла распространение как обеспечивающая высокую поверхностную твердость, а не как средство увеличения коррозионной стойкости. Действительно, по крайней мере для некоторых сталей коррозия в кислотах увеличивается при азотизации, как указано Жил-летом и Белли , однако сопротивление коррозии при погружении в соленую воду, в многие пресные воды и в условиях обычной атмосферы несколько улучшается, а сопротивление коррозионной усталости в значительной степени возрастает. Это иллюстрируется результатами работы Инглиса и Лэка п[>едставленными в табл. 52. Полученные пределы коррозионной усталости соответствуют испытаниям, проводившимся при 1,7 10 циклах в речной воде.  [c.615]

Радиоактивная защита основана на использовании в составе необрастающих ЛКП радиоактивных изотопов углерода, кобальта, меди, таллия, иттрия, технеция с добавкой их по массе 0,1...1,5 %. Радиоактивный технеций Тс с периодом полураспада 2,1-10 лет и его соединения применяют для защиты гидротехнических сооружений, корпусов судов, поверхностей резервуаров, трубопроводов, теплообменников, КИП и другой аппаратуры, эскплуатирующихся в морской или речной воде от обрастаний микроорганизмами. Эффект достигается при нанесении соединений Тс на металлы, древесину, оргстекло, стеклоткань, полимеры и другие соединения. Например, металлический Тс осаждали на аустенитные стали из электролита на основе пертехната аммония (рЯ=1) при плотности тока 1,3 А/дм2 (аноды — платина), толщина слоя до 1,6 мкм.  [c.93]

Низколегированные конструкционные стали содержат небольшие количества никеля, меди, хрома, кремния и алюминия и в слабоагрессивных средах, т. е. в морской и речной воде, в промышленной и морской атмосфере, обладают повьшгенной коррозионной стойкостью по сравненшо с углеродистыми сталями.  [c.38]

Для защиты от коррозии оборудования, контактирующего с речной водой, щироко применяются различные металлические покрытия. Выбор металла, используемого для покрытия, и метод его нанесения зависят от вида защищаемого оборудования и характера водной среды. Цинковые гальванические покрытия (наносимые из цианистых, сернокислых и других электролитов) используются для защиты от коррозии листовой стали, из которой изготавливают емкости для неумягченной воды. Покрытие имеет хорощую стойкость к коррозии практически в любой нейтральной природной воде, в том числе жесткой, содержащей гидрокарбонат кальция, при низких и повыщенных температурах.  [c.99]

Коррозионная стойкость нержавеющей стали выше, чем латуни. Так, нержавеющая сталь типов 18/8 и 304 обладает удовлетворительной коррозионной стойкостью в речной и морской водах при отсутствии на ее поверхности наносных отложений, накипи и продуктов обрастания. В противном случае они подвергаются язвенной коррозии, коррозионному растрескиванию и другим видам локальной коррозии, которая интенсифициру--ется содержащимися в воде хлоридами. Толщина стенок трубок из нерл авеющей стали может быть снижена до 0,71 мм по сравнению с 1,29 мм для трубок из медных сплавов.  [c.143]

Систематизация данных об изменении интенсивности отказов элементов химико-технологической системы в процессе эксплуатации позволяет установить определенную классификацию периодов отказов элементов (рис. 10.6). Для зоны I характерна высокая интенсивность отказов, коррозионная агрессивность технологических сред в этот период очень высока. В период пуска и испытаний (зона I) возможны серьезные коррозионные повреждения аппаратуры и коммуникаций, в частности из-за неправильной методики их организации. Так, в [ПО] описана интенсивная коррозия трубопроводов из нержавеющей стали 12Х18Н10Т в период испытаний под действием речной воды с повышенным содержанием солей (до  [c.188]


Смотреть страницы где упоминается термин Сталь в речной воде : [c.107]    [c.176]    [c.238]    [c.20]    [c.70]    [c.145]    [c.187]    [c.71]    [c.793]    [c.12]    [c.18]    [c.189]    [c.193]    [c.504]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.46 , c.52 , c.101 , c.143 ]



ПОИСК



Речная вода



© 2025 Mash-xxl.info Реклама на сайте