Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Течение жидкости вращательное энергии

Диссипация энергии обусловлена тремя причинами [6] (а) поступательным движением частиц относительно окружающей жидкости, (б) вращением частиц относительно жидкости, (в) неспособностью твердой частицы деформироваться таким образом, чтобы приспособиться к деформациям в невозмущенном течении жидкости. В случае малых сферических частиц вращательная компонента диссипации энергии, как правило, исчезает.  [c.416]


Отсутствие любого из членов, включающих вязкость, в уравнении энергии для безвихревого установившегося или неустановившегося потока в действительности означает, что в любой области мгновенная скорость диссипации энергии, вызванной вязкостью, точно компенсируется мгновенной скоростью совершения работы вязких сил на границе этой области. В частности, если скорость обтекания безвихревым потоком твердого тела (поверхность которого движется в соответствии с теорией потенциального течения) постоянна, диссипация энергии во всей области потока в точности равна скорости, с которой совершается работа вязкого сдвига по движущейся поверхности твердого тела. Примерами безвихревого движения вязкой жидкости могут служить движение жидкости в неограниченном пространстве, вызванное вращением цилиндра бесконечной длины, и движение между концентрическими цилиндрами, вращающимися с угловыми скоростями, обратно пропорциональными квадратам их радиусов. Это простые вращательные движения, которые могут быть воспроизведены на практике, поскольку скорость, налагаемая твердой границей, постоянна.  [c.200]

Каверна, возникшая в ядре вихря, может заметно изменить энергию вихревой системы, если она достаточно велика, и изменяет течение вращающейся массы жидкости в этом вихре. Так как в большинстве случаев вихри сходят с твердых границ в жидкость, любые изменения, вызванные кавитацией, могут не оказывать влияния на распределение давления,около этих границ и, следовательно, не изменять сопротивление формы. Однако в некоторых случаях присоединенные каверны образуются в зонах интенсивного вихревого движения около направляющих поверхностей, например на поверхностях лопастей в окрестности кромок гребных винтов и рабочих колес осевых насосов. В таких случаях могут формироваться струйные возвратные течения с вращательными составляющими местного течения и линейными составляющими основного течения. Это приводит к изменению скорости и распределения давления на направляющих поверхностях, а также к изменению сопротивления и соответствующим потерям энергии.  [c.325]

По-видимому, она может быть объяснена следующим образом. При малых числах Рейнольдса циркуляция вследствие вязкой диффузии от вихревой нити занимает всю область течения. При этом генерируются вторичные течения, стремящиеся осуществить конвекцию циркуляции обратно к вихревой нити. Вторичные течения черпают свою энергию из энергии вращательного движения жидкости. С ростом числа Рейнольдса перекачка энергии прогрессивно нарастает. Поступление энергии из бесконечности и от вихревой нити происходит медленнее, чем ее трансформация в энергию вторичных течений. Эти соображения в известной мере подтверждаются результатами решения задачи при малых Re. В конце концов возникает ситуация, когда энергия вращения вовсе иссякает. При Re = 5,53 происходит коллапс вращения, в то время как во внешней части остаются вторичные течения, поддерживаемые неисчезающим градиентом давления. Как видим, в данной проблеме условия прилипания на плоскости оказывают более сильное влияние на течение жидкости, чем условия движения на  [c.55]


Характерной особенностью физической газовой динамики является изучение течений жидкости и газа при высоких температурах и в широком диапазоне изменения давления. Высокие температуры среды исключают возможность полного количественного и качественного описания современных механических проблем в рамках модели совершенного газа с постоянной теплоемкостью. С ростом температуры в газе начинают происходить такие процессы, как возбуждение вращательных и колебательных степеней свободы, диссоциация (рекомбинация) молекул, возбуждение электронных уровней атомов, ионизация (нейтрализация) атомов, излучение и поглощение лучистой энергии. Течение сильно нагретого газа около стенок приводит к их термическому разрушению. Все эти процессы относятся к области молекулярной и атомной физики, сыгравшей в начале этого века очень важную роль в расширении наших представлений о строении атомов и о законах микромира. Результаты этого раздела физики применялись к изучению электрических разрядов в газах и для решения астрофизических проблем. Сейчас же они образуют научный фундамент многих важных технических задач сегодняшнего дня.  [c.5]

Новые направления, без освещения которых невозможен учебник технической термодинамики, возникли и в самой энергетике. Сюда прежде всего относятся развитие парогазовых установок, использование углекислотных циклов, рабочие циклы атомных электростанций. В связи с проблемой прямого превращения тепла в электрическую энергию в магнитогидродинамических генераторах в разделе курса, посвященном течению газов, целесообразно рассматривать, хотя бы в упрощенной форме, течение электропроводящего газа по каналу в магнитном поле. Развитие и использование топливных элементов сказываются вполне естественно на изложении раздела химической термодинамики. Представляется также целесообразным рассмотрение вопросов поступательно-вращательного движения жидкостей и газов по трубам, так как практически довольно часто приходится встречаться с такими потоками (например, в холодильных установках, в теплообменных устройствах нового типа и т. п.).  [c.6]

Известно, что при критических условиях деформации вследствие ротационной неустойчивости происходит переход к турбулентному" течению металла [184]. Для потоков жидкости и газа ротационная неустойчивость проявляется при критических градиентах скоростей поперек линий тока. В работе [185] предложена модель турбулентного течения кристаллов, деформирующихся с участием собственных вращений частиц. Вращательное движение частиц предположительно вызывается силами вязкого трения, подобно тому как это происходит в жидкости. Образующаяся вихревая структура течения, представленная в виде системы вихрей одного масштаба, рассматривается как диссипативная структура. Теоретически показано, что турбулентное течение кристаллов возникает при скоростях пластического сдвига выше критических при переходе от ламинарного течения кристалла к турбулентному происходит существенное снижение величины диссипируемой энергии турбулентность способствует локализации пластической деформации [185].  [c.106]

Наилучшими показателями обладает турбина, выполненная в виде рабочего колеса с горизонтальной осью в насадке. Это объясняется тем, что такое рабочее колесо меньше возмущает поток, не так сильно, как свободное, вовлекая жидкость во вращательное движение. Насадок как бы отделяет возмущенную часть потока от невозмущенной и в то же время обеспечивает некоторую концентрацию энергии. Форму насадка выбирают из такого расчета, чтобы обеспечить плавное безотрывное течение потока на подходе к турбине, сделать всю систему устойчивой на потоке, максимально снизить завихренность потока на выходе из нее.  [c.134]

ЗАКОН сохранения [количества движения ( при любом взаимодействии между телами, образующими замкнутую систему, скорость движения центра инерции этой системы не изменяется в электромагнитном поле в замкнутом объеме, ограниченном поверхностью, остается неизменным механический импульс и импульс электромагнитного поля ) массы масса (вес) веществ, вступающих в реакцию, равна массе (весу) веществ, образующихся в результате реакции материи в изолированной системе сумма масс и энергий постоянна момента углового если на систему не действуют моменты внешних сил (замкнутая система), то ее полный угловой момент остается постоянным по величине и направлению магнитного потока магнитный поток связан с частицами среды и перемещается вместе с ними массы масса тела не зависит от скорости его движения, а масса изолированной системы тел не изменяется при любых происходящих в ней процессах даркуляции скорости при движении идеальной жидкости баротронной в потенциальном поле массовых сил циркуляция скорости вдоль произвольного контура, проведенного через одни и те же частицы жидкости, не изменяется с течением времени энергии ( энергия не может исчезать бесследно или возникать из ничего механической в замкнутой механической системе сумма механических видов энергии (потенциальной и кинетической, включая энергию вращательного движения) остается неизменной ) и превращения энергии при любых процессах, происходящих в изолированной системе, ее полная энергия не изменяется энергии электромагнитного поля убыль энергии  [c.237]



Смотреть страницы где упоминается термин Течение жидкости вращательное энергии : [c.278]    [c.32]    [c.173]    [c.653]    [c.70]   
Механика жидкости (1971) -- [ c.83 , c.87 ]



ПОИСК



Жидкость вращательное

Течение в жидкости

Энергия вращательная

Энергия жидкостей



© 2025 Mash-xxl.info Реклама на сайте