Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергоресурсы тепловые

Энергетические коэффициенты компрессоров 250 Энергоресурсы тепловые вторичные 182  [c.672]

За прошедшие 60 лет отмечены следующие существенные отклонения от прогноза Н. А. Умова началась и быстро проходит эпоха нефти и природного газа, наступила и еще долго продлится эра атомной энергии (рис. 1.1), передвинулся на отметку примерно 40% предел повышения КПД тепловых двигателей (рис. 1.2) при этом поршневые паровые машины окончательно вытеснены турбинами и двигателями внутреннего сгорания. Однако постоянно возобновляющиеся энергоресурсы (ветер, приливы и отливы, волны, солнечное излучение, тепло недр Земли), как и прежде практически почти не используются.  [c.11]


Все эти мероприятия (и ряд других, о которых речь будет дальше) позволили значительно уменьшить стоимость 1 кВт установленной мощности и 1 кВт-ч выработанной электрической (и получаемой из нее механической и тепловой) энергии. Поэтому возврат к малой стационарной энергетике, даже если учесть выгоду от исключения линий дальних электропередач, экономически совершенно нецелесообразен при обилии и доступности химических и ядерных энергоресурсов и экологической безвредности их использования.  [c.155]

Ленинградская система к 1935 г. состояла иа всех типов станций — гидравлических и тепловых (конденсационных и теплофикационных), потреблявших исключительно местное топливо. Проблема энергоресурсов для Ленинградского промышленного района была успешно разрешена.  [c.21]

Другое важное направление совершенствования энергетического аппарата — сокращение всех видов потерь энергии и ее расхода на собственные нужды ЭК (последние составляют до 12% общего расхода конечной энергии в народном хозяйстве). Важную роль в этом направлении играет использование вторичных энергоресурсов — горючих и тепловых. В настоящее время за счет вторичных энергоресурсов страна получает такое же количество энергии (в топливном эквиваленте), какое дают все ГЭС. В рассматриваемой перспективе роль вторичных энергоресурсов будет выше, чем использование гидроресурсов и всех других возобновляемых энергоресурсов (солнечной, геотермальной, ветровой), вместе взятых. За счет вторичных энергоресурсов будет обеспечиваться до 5% всех энергетических нужд общества. Целые подотрасли химической промышленности, цветной металлургии и другие производства могут работать без использования первичных энергоресурсов, только за счет утилизации энергии, выделяемой в технологических процессах.  [c.56]

Обеспеченность энергоресурсами. Очевидно, что для надежного электроснабжения потребителей ЭЭС должна быть обеспечена энергоресурсами — топливом для ТЭС и водой для ГЭС. При планировании развития ЭЭС, содержащих ГЭС, оценка надежности обеспечения энергоресурсами необходима для выбора установленной мощности тепловых станций в условиях эксплуатации на этих расчетах надежности должно основываться планирование поставок топлива и выработки электроэнергии на ГЭС. Повышение качества оценки надежности возможно за счет использования прогнозов притока воды в водохранилища ГЭС на год и на пятилетку при решении эксплуатационных и на 15—20 лет — проектных задач.  [c.175]

Оба физических процесса — поглощение и рассеяние — представляют собой единственные механизмы, посредством которых атмосфера может воздействовать на интенсивность потока солнечного излучения. Только солнечная энергия является энергоресурсом, имеющим громадное значение для земного шара. На рис. 12.8 схематически изображен тепловой баланс системы Земля — атмосфера — космос.  [c.293]


Проведенная работа по экономии и рационализации использования тепловой и электрической энергии, а также по увеличению использования вторичных тепловых энергоресурсов позволила сэкономить в 1980 г. по сравнению с 1975 г. не мен,ее 35 млн. т условного топлива.  [c.13]

В перспективном периоде 1985—1990 гг. развитие централизованного теплоснабжения будет происходить с нарастающим влиянием энергосберегающей политики. Все в большей мере прирост потребности в тепловой энергии будет обеспечиваться за счет широкого проведения мероприятий по экономии тепловой энергии и замещения производства ее на органическом топливе источниками на неорганическом топливе (атомная энергия, геотермальная, солнечная), использования вторичных энергоресурсов и т. д. За счет проведения указанных мероприятий намечено получить в одиннадцатой пятилетке около 20% всего прироста потребления тепловой энергии от Централизованных источников.  [c.74]

Отдельные проблемы возникают при приведении к единому показателю энергоресурсов, не имеющих стандартных коэффициентов преобразования, которые позволили бы сопоставлять их по тепловому эквиваленту. К таким энергоресурсам можно отнести энергию, получаемую в процессе международного обмена электроэнергией, гидроэнергию, электроэнергию, вырабатываемую на АЭС, вторичные тепловые энергоресурсы, городские отходы.  [c.130]

Печь для сушки древесины, снабженная тепловым насосом. Традиционный способ сушки древесины заключается в ее нагреве с последующим выпуском влажного воздуха в атмосферу. Энергетическая эффективность такой системы низка, и имеется возмож.ность заменить топливо электроэнергией, если вторичные тепловые энергоресурсы, содержащиеся в струе выходящего воздуха, будут утилизированы. Для этого необходимо повысить энергетический потенциал отводимого из камеры воздуха — сперва осушить его, а затем поднять его температуру до такого уровня, который требуется при повторной подаче воздуха в сушильную камеру. Если пропускать струю удаляемого из камеры влажного воздуха над испарителем теплового насоса, влага будет осаждаться на испарителе и воздух станет сухим после этого он опять нагреется, проходя над конденсатором теплового насоса. Таким образом, тепловой насос (осушитель) повышает температуру воздуха, сохранившего остаточное тепло, и утилизирует скрытую теплоту, содержащуюся в удаленной из древесины влаге.  [c.196]

За пределами текущего века отмеченные тенденции, характеризующие структуру энергопотребления, будут усиливаться при снижении доли нефти, а далее и природного газа в общем потреблении энерго-ресурсов. Следствием сказанного является непрерывный рост практически во всех промышленно развитых странах доли энергоресурсов, расходуемых на производство преобразованных видов энергии - электрической и тепловой. За период с 1960 по 1980 г. доля энергоресурсов, расходуемых на производство электроэнергии в мире в целом, возросла с 21% до почти 29%, а к 2000 г., по-видимому, повысится до 34-37%. Цифры, близкие к указанным, характерны также для государств быв-  [c.8]

На рис. 1.2 можно видеть взаимосвязи при производстве первичных энергоресурсов между УСС, НСС и ГСС за счет получения жидкого топлива и синтетического газа из угля между НСС и ГСС за счет получения газа из газоконденсатных месторождений и попутного газа нефтепромыслов, с одной стороны, и природного газа газовых промыслов, с другой. Взаимосвязи между УСС, НСС, ГСС и ЯЭС, включая частичную взаимозаменяемость первичных энергоресурсов, обеспечиваются в ЭЭС при производстве электрической и тепловой энергии. Возможна взаимозаменяемость некоторых видов энергоресурсов (в том числе вторичных) у потребителей. Основные возможности взаимозаменяемости показаны сплошными линиями пунктирными указаны  [c.20]

Электро- и теплоэнергетика. В модели все рассматриваемые электростанции делятся на четыре типа КЭС, ТЭЦ, ГЭС и АЭС. Теплоэнергетика представлена дополнительно блоком котельных. ТЭС (КЭС и ТЭЦ) подразделяются в зависимости от вида основного топлива на угольные, мазутные, газомазутные, и отдельно выделяются электростанции, работающие на местном топливе (торфе, сланцах) и на вторичных энергоресурсах (доменном и коксовом газе). Зависимость электрической нагрузки ТЭЦ от тепловой нагрузки учитывается заданием двух крайних режимов теплофикационного и конденсационного.  [c.432]


Уравнения модели описывают, во-первых, технологические цепочки преобразования энергоресурсов от добычи (производства) до потребления с учетом действующих в этом процессе Ограничений. В модели рассматриваются балансы отдельных видов котельно-печного и моторного топлива, тепловой и электрической энергии. Во-вторых, уравнения модели описывают территориальные связи ЭК, обеспечивая условие баланса производства и потребления (с учетом меж-  [c.434]

В топливных и тепловых балансах промышленных предприятий энергоемких отраслей промышленности вторичные энергоресурсы играют различную роль. Роль ВЭР, как одного из дополнительных источников покрытия потребности промышленных предприятий в топ-  [c.25]

Газовая промышленность потребляет сравнительно небольшое количество тепловой энергии. При этом следует отметить, что основным потребителем тепловой энергии являются вспомогательные промысловые и строительные объекты, а не компрессорные станции, где образуются вторичные энергоресурсы. ВЭР участвуют в покрытии тепловой нагрузки компрессорных станций и прилегающих жилых поселков. В эту нагрузку входит покрываемая за счет ВЭР потребность в горячей воде для теплофикационных и коммунально-бытовых нужд. Несмотря на все увеличивающиеся объемы возможного использования вторичного тепла компрессорных станций, фактическое его использование ограничивается отсутствием постоянных и энергоемких потребителей низкопотенциального тепла вблизи этих источников. Полное удовлетворение всех теплофикационных и хозяйственных нужд компрессорных станций и близлежащих жилых поселков позволяет использовать всего лишь 10—15% располагаемых тепловых ВЭР и то лишь в зимний период. В связи с этим использование тепла выхлопных газов газовых турбин и газовых компрессоров в настоящее время составляет около 17,5% общего потребления тепла отраслью.  [c.36]

Приведенный анализ показывает, что в настоящее время вторичные энергоресурсы играют различную роль в топливных и тепловых балансах предприятий энергоемких отраслей промышленности. Исходя из современных масштабов потребления топливно-энергетических ресурсов, доля горючих ВЭР в потреблении топлива в рассмотренных отраслях промышленности составляет в среднем около 10% и тепловых ВЭР в потреблении тепловой энергии—12,5%.  [c.38]

Например, при производстве чугуна только 30—38% поданного в доменную печь тепла используется полезно (диссоциация окислов, восстановление железа и др.), а 55—60% тепла приходится на вторичные энергоресурсы. Аналогично при мартеновском способе производства стали ВЭР составляют более 50% расходной части теплового баланса мартеновской печи.  [c.39]

К ВЭР прокатного производства относятся физическое тепло уходящих газов нагревательных устройств и тепло, теряемое с охлаждающей средой. Вторичные энергоресурсы занимают значительную долго в расходной части теплового баланса печей.  [c.46]

Недостатки в работе утилизационного оборудования в целом по промышленности существенно снижают степень и эффективность использования ВЭР. Только в черной металлургии из-за неполного использования выработанного теплоутилизационными установками пара ежегодно теряется примерно 8—10 млн. ГДж тепловой энергии. А всего по отрасли из-за неполного использования утилизационного оборудования, вызванного сезонной неравномерностью в потреблении тепловой энергии, загрязнениями поверхностей нагрева котлов-утилизаторов, потерями, возникающими из-за больших присосов холодного воздуха в дымовых боровах и другими причинами, только в 1970 г. потеряно около 58 млн. ГДж при общей выработке тепла всеми утилизационными установками 110 млн. ГДж [8]. Поэтому улучшение условий работы утилизационного оборудования, ликвидация недостатков в его эксплуатации являются важным резервом повышения эффективности и степени использования вторичных энергоресурсов.  [c.165]

Вторичные энергоресурсы могут использоваться на выработку холода по двум типичным схемам без преобразования и е преобразованием энергоносителя. Естественно, что путь непосредственного использования ВЭР для обогрева генераторов АХУ без преобразования энергоносителя является более эффективным, так как при этом не требуется строительство промежуточных утилизационных установок, использующих ВЭР технологических агрегатов-источников. Во втором случае в качестве теплоносителя для обогрева генераторов холодильных установок используется пар котлов-утилизаторов. При разработке рационального топливно-энергетического баланса промышленного предприятия или промышленного узла наряду е использованием пара утилизационных установок для производства холода возможны и другие направления его использования для покрытия промышленных тепловых нагрузок с учетом их перспективного роста. В связи с этим при определении сравнительной  [c.215]

Вторичные энергоресурсы, по своей сущности являющиеся определенным видом энергии (химической, тепловой, механической), образуются в технологических процессах за счет неполного использования энергии топлива, экзотермических реакций сжатых жидкостей и газов, поэтому их выход зависит главным образом от степени использования энергии в технологическом агрегате. С повышением эффективности использования тепла в печах выход ВЭР, т. е. количество уносимого за пределы агрегатов тепла, падает.  [c.243]

Наличие на предприятии вторичных энергоресурсов (горючих и горячих отходов технологических процессов производства), в значительной степени (до 60—80%) обеспечивающих энергоснабжение завода является основанием для сооружения заводской электростанции конденсационного или теплофикационного типа (в зависимости от соотношения количеств потребляемой электрической и тепловой энергии). Наличие (или техническая возможность и экономическая целесообразность) связи завода с районной энергосистемой является фактором, действующим против сооружения собственной электростанции. Промежуточным вариантом может быть централизованное электроснабжение (от районной энергосистемы) и индивидуальное теплоснабжение (от заводских котельных).  [c.252]


Большие перспективы для интенсификации процесса теплообмена имеются у центробежных тепловых труб и теплообменников на их основе. Центробежное поле позволяет существенно увеличить интенсивность процесса теплообмена как внутри тепловых труб, так и на их внешней поверхности. Этот фактор может быть использован для более эффективного охлаждения электрических машин, подшипников, валов, тормозных колодок автомобилей и железнодорожных вагонов, турбокомпрессоров. Интенсификация внешнего теплообмена в центробежных тепловых трубах дает возможность создавать компактные теплообменники для утилизации вторичных энергоресурсов и альтернативных источников энергии, сушильные камеры и печи для термообработки материалов, сжигания различных отходов.  [c.4]

Анализ тепловых балансов установок позволяет выявлять увеличенные статьи расхода, принимать меры к их уменьшению и тем самым к повышению к. п. д. Кроме того, этот анализ дает возможность находить существенные вторичные энергоресурсы большие расходы уходящих с высокой температурой дымовых газов, охлаждающей воды, тепла, уносимого готовой продукцией. Использование вторичных энергоресурсов повышает степень использования тепла.  [c.10]

До настоящего времени предприятия химической промышленности являются большими потребителями первичных энергоресурсов (топлива, теплоты и электроэнергии), получаемых со стороны. При правильной разработке энерготехнологической схемы производства можно не только значительно сократить потребление первичных энергоресурсов, но и даже полностью отказаться от потребления теплоты и электроэнергии, получаемых со стороны. Считается наиболее перспективным создание ЭХТС, в которых энергетическое оборудование (тепло-и парогенераторы, котлы-утилизаторы, паровые и газовые турбины, теплоиспользующие аппараты, холодильные установки, тепловые насосы и термотрансформаторы) входит в прямое соединение с химикотехнологическим оборудованием, составляя единую систему. В такой ЭХТС всякому изменению параметров химической технологии должны сопутствовать и соответствующие изменения энергетических параметров и наоборот. Таким образом, в ЭХТС создается тесная взаимосвязь и взаимообусловленность между технологическими и энергетическими стадиями производства.  [c.308]

Эффективность теплоснабжения может быть существенно повышена в связи с развитием энерготехнологии и использованием вторичных энергоресурсов. Одним из путей повышения эффективности системы теплоснабжения является снижение потерь теплоты в тепловых сетях, которые составляют примерно 9 отпущенной теплоты. Только за счет улучшения теплоизоляции эти потери могут быть снижены примерно до 2%. Каждый процент снижения потерь эквивалентен экономии условного топлива в количестве 2 — 4 млн. т.  [c.389]

Пока в мире в среднем около 93% потребностей в энергоресур-сах удовлетворяется за счет невозобновляел1ЫХ ИЭ — минеральных органических топлив — и только приблизительно 7% — за счет возобновляемых, в основном гидроэнергии рек. При этом 25—30% из невозобновляемых энергоресурсов расходуется на производство электроэнергии, 85—80% которой вырабатывается на тепловых электростанциях, использующих органическое топливо (ТЭС), и 15—20% — на гидроэлектростанциях (ГЭС). Итак, небольшая часть электроэнергии, вырабатываемая последними, сокращается (начиная с 1960 г.) ежегодно на 0,7%.  [c.151]

Началась подготовка к строительству крупнейшей в Советском Союзе АЭС, электрическая мощность которой в одном блоке (с реактором воднографитового типа) составит 1 млн. кет. Ведется подготовка к строительству новых мощных атомных электростанций, намечаемому преимущественно в районах, бедных энергоресурсами и удаленных от мест добычи органического топлива,— там, где такие станции обусловят возможность особенно экономически выгодного получения электроэнергии. Энергетическую базу первой очереди этих станций составят реакторы на тепловых нейтронах электрической мощностью 400 тыс. кет каждый и более. Такие реакторы обладают большой эксплуатационной надежностью и на некоторый период сохранят значение одного из основных типов реакторов для предприятий атомной энергетики СССР. Но наряду с ними все большее значение приобретают реакторы на быстрых нейтронах как особенно перспективный тип энергетических реакторов с высоким коэффициентом воспроизводства ядерного топлива (плутония). Работы по конструированию и промышленному освоению рациональных реакторных установок, по введению поточного производства тепловыделяющих элементов и по осуществлению других практических задач создадут возможность для широкого строительства атомных электростанций. Общая мощность советских АЭС будет исчисляться многими миллионами киловатт.  [c.196]

Оба главных направления экономии энергоресурсов — на выработке электроэнергии и на железнодорожных перевозках — в значительной мере стали возможны благодаря массовому вовлечению в энергетический баланс СССР нефти и природного газа. Важную роль в снижении удельного расхода топлива на выработку электроэнергии сыграло освоение в 60-е гг. закритических параметров нара и увеличение единичной мощности агрегатов (энергоблоков) электростанций. Поскольку такие блоки первоначально создавались на газомазутном топливе, это ускорило их разработку и освоение. В сочетании с продолжавшимся в 60-е гг. быстрым развитием теплофикации (доля комбинированного производства электроэнергии и тепла на теплоэлектроцентралях (ТЭЦ) в общей выработке электроэнергии ТЭС достигла в 1965—1970 гг. 36—38%, после чего снизилась до 30% в настоящее время) новышение тепловой экономичности турбоагрегатов вызвало резкое снижение удельного расхода топлива на выработку электроэнергии. Если в 1960 г. он составлял 471 г/кВт-ч,, то к 1965 г. снизился до 422 г/кВт-ч, к 1970 г.— до 371 г/кВт-ч и к 1975 г.— до 342 г/кВт-ч. В середине 80-х гг. средний удельный расход условного топлива на выработку электроэнергии приблизился в СССР к 325 г/кВт-ч и стал одним из самых низких в мире.  [c.18]

Наряду со стимулированием энергосбережения в сфере общественного производства необходимо всемерно стимулировать его и в сфере личного потребления. С этой целью необходимо умело регулировать розничные цены на энергоресурсы при одновременном налаживании эффективной системы учета и контроля их использования. В частности, дважды проведенное в СССР повышение розничных цен на автомобильный бензин (ранее он стоил дешевле газированной воды) даст необходимый эффект лишь при условии пресечения незаконной перепродажи государственного бензина владельцам частных автомашин. Аналогично эффективные меры по экономии тепловой эиергин в жилищно-бытовом секторе могут быть приняты только при оснащении потребителей счетчиками тепла и регулирующей аппаратурой.  [c.66]

Рассмотренная стратегия поэтапной перестройки производственной структуры ЭК позволяет продолжить начатое в 50-е гг. качественное совершенствование топливо- и энергоснабжения основных категорий потребителей. Главным средством такого совершенствования станет наряду с углеводородным топливом также ядерная энергия. Сказанное иллюстрирует рис. 4.3. Из него видно, что расход энергоресурсов на нетопливные нужды и в качестве сырья, а также на мелкие тепловые установки будет по-прежнему обеспечиваться только органическим топливом, причем все в большей мере — газом. На технологических установках промышленности домини-руюш,ую роль также сохранит органическое топливо, но во 2-й фазе переходного периода может начаться использование высокотемпературных ядерных реакторов — в черной и цветной металлургии, химической промышленности и т. д. Прирост потребления технологическими энергоустановками органического топлива будет практически полностью обеспечиваться газом (отчасти мазутом), а уголь сохранится здесь в доменном производстве (кокс) и, вероятно, в цементной промышленности, но крайней мере в восточных районах страны.  [c.80]


Преобразование вторичных энергоресурсов (ВЭР) в. тепловую энергию позволяет удовлетворить теплофикационные нужды КС и внешнего потребителя (жилой поселок). Преобразование тепла выхлопных газов в холод позволяет снизить температуру циклового воздуха и тем самым увеличить мощность ГТУ. Получаемый холод можно использовать для охлажедния транспортируемого газа. Применение дополнительной механической энергии, выработанной за счет уепла отходящих газов ГТУ, позволяет увеличить мощность газоперекачивающих агрегатов и к.п.д. установок в целом. Механическую энергию можно использовать также и для привода компрессоров холодильных установок систем охлаждения транспортируемого газа. Утилизация тепла отходящих газов ГТУ для получения электроэнергии позволяет удовлетворить нужды КС в этом виде энергии. Получаемую электроэнергию можно применять для привода холодильных установок систем охлаждения транспортируемого газа.  [c.68]

В цветной металлургии основными источниками выхода тепловых вторичных энергоресурсов являются отражательные, анодные, вайербарсоаые, шахтные и шлаковозгоночные печи, печи для обжига концентратов в кипящем слое, конверторы, печи кислородно-взвешенной плавки и т. д.  [c.82]

Машиностроение имеет тепловые ВЭР в виде физической теплоты отходящих газов нагревательных печей, термических и мартеновских печей, теплоты горячей воды и пара после их использования в технологических установках, В 1980 г, использование тепловых ВЭР на предприятиях отраслей машиностроения составило 16 млн. ГДж, или 14,11% возможного. Недостаточный уровень утилизации тепловых вторичных энергоресурсов в отрасли обусловлен рядом причин сравнительно небольшой мощностью агрегатов — источников ВЭР и отсутствием серийно изготавливаемого утилизационного оборудования для небольших объемов выхода ВЭР, отно-6 83  [c.83]

В одиннадцатой пятилетке на предприятиях машиностроительных отраслей будет осуществлен ряд мероприятий, направленных на повышение уровня утилизации вторичных энергоресурсов ввод котлов-утилизаторов за печами, перевод мартеновских печей на испарительное охлаждение, установка водяных экономайзеров и калориферов для утилизации ннзкопотенциальных ВЭР и др. За счет этих мероприятий б 1985 г. уровень утилизации тепловых ВЭР достигнет 32 млн. ГДж, или 30,5% возможного использования.  [c.84]

Неравномерность размещения природных запасов энергоресурсов по территории, несоответствие районов размещения запасов районам их потребления, концентрация предприятий по добыче (производству, получению), переработке (преобразованию), хранению и потреблению различных видов энергоресурсов приводят к постоянному росту транспортных потоков топлива, электрической и тепловой энергии. Основой современного энергетического комплекса становятся крупные специализированные системы энергетики (электроэнергетические, теплоснабжения, газоснабжения, нефтеснабжения, углеснабже-ния, ядерной энергетики), часто охватывающие территории не только  [c.9]

В модели ЭК рассматриваются четыре вида энергоресурсов электроэнергия (Э), газ (F), нефть (Н), уголь (У). По каждому виду энергоресурсов в модели сформируется отдельная потоковая сетевая подмодель, или подсеть, а узлы- потребители и узлы- тепловые электростанции во всех подсетях совпадают и играют роль связующего звена между ними. Таким образом, структура модели в целом описывается мультиграфом с кратными ребрами, который изображен на рис. 8.7, где пунктиром показано совпадение узлов- потребителей . Дуги в каждой подсети соответствуют транспортным коммуникациям для передачи соответствующего энергоресурса. Предполагается, что величины всех потоков выражены в единицах условного топлива. Перейдем к детальному описанию всех элементов модели.  [c.437]

Вторичные энергоресурсы имеются также и в других подотраслях химической промышленности. При производстве пластических масс к тепловым ВЭР относится физическое тепло уходящих газов печей термического обезвреживания сточных вод, тепло конденсата и горячей воды, тепло паров вторичного вскипания, В технологических процессах производства лаков и красок к тепловым ВЭР может быть отнесено физическое тепло уходящих газов печей для сжигания колчедана, печей цинкобензольного и магнезиального производства, физическое тепло охлаждающих контуров технологических печей и физическое тепло отработавшего пара.  [c.58]

Отопление и кондиционирование — еще одна важная область конечного использования энергии, в которой может быть получена экономия. Так, в США в 1985 г. в этой области может быть получена экономия энергии, эквивалентная 50 млн. т нефти в год, и еще 55 млн. т могут быть сэкономлены за счет улучшения изоляции помещений в строительстве [9]. По этому поводу, однако, почти невозможно сделать какие-либо общие выводы. В существующей практике изоляции помещений имеются большие различия между странами и даже внутри крупных стран, так же как в принятой температуре внутри помещений, в расчетной температуре наружного воздуха для проектирования отопительных систем, а также в степени распространения централизованного отопления или тепловых насосов. Если в США возможная экономия энергии определяется более или менее надежно, подобные расчеты для Европы выполнить значительно труднее. В отличие от США здесь наблюдается больщое разнообразие бытовых отопительных систем используются дрова, уголь, природный газ, электрические камины применяются центральные отопительные системы на всех видах топлива, причем большое значение имеют различия в индивидуальных вкусах. В этих условиях вид добровольной экономии мог бы и должен играть важную роль попытки оценить возможности такой экономии делались. Во Франции доля отопления в общем потреблении энергии оценивается в 25 %, поскольку широко используются уголь и дрова с отоплением связаны значительные проблемы загрязнения среды. В 1974 г. в Норвегии исследовалась возможность применения электроэнергии для отопления помещений причем доказывалось, что издержки в этом случае оказываются дополнительными по отнощению к издержкам, связанным с обеспечением электроэнергией обязательных потребителей, и поэтому удельные затраты окажутся вдвое ниже, чем для бытового электроснабжения без отопления. Это пример пропаганды, направленной на обеспечение экономии второго рода, т. е. с использованием усовершенствованных приборов. Поскольку существует мнение о расточительности электроотопления, интересно отметить, что в одной из американских работ 1974 г. [43] указывается, что практически при электроотоплении достигается тот же самый коэффициент преобразования первичных энергетических ресурсов, что и при использовании печей на нефтетопливе. Более того, на электростанциях могут применяться разнообразные виды первичных энергоресурсов разного качества .  [c.276]

В связи с актуальностью проблемы экономии топлива и утилизации вторичных энергоресурсов большое значение приобретают работы по созданию эффективной теплообмеиной аппаратуры. Тепловые трубы и теплообменник на их основе являются одними из лучших теплообменных устройств для решения поставленной задачи. В книге рассмотрены результаты теоретических и экспериментальных исследований процессов тепло- и массообмена в тепловых трубах, связанные с дальнейшим развитием тепловых труб, повышением их теплотехнических характеристик. Приведен теоретический ана." 13 процессов тепло- и массообмена в тепловых трубах на основе термодинамических представлений. Даны классификация капиллярно-пористых структур, обобщенная модель эффектн -ной теплопроводности фитилей тепловых труб и их оптимизация по минимальному термическому сопротивлению. Рассмотрены процессы тепло- и массообмена в центробежных тепловых трубах и методы их интенсификации.  [c.2]

Существенная экономия топлива в масштабе завода может быть получена только при разработке и внедрении общей рациональной схемы производства и потребления тепла на основе изучения возможных вариантов тепловых балансов отдельных цехов и их взаимной увязки. Общий тепловой баланс завода должен предусматривать использование как внутренней, так и внезавод-ской кооперации источников и потребителей тепла. Внутренняя кооперация должна приводить к максимальной экономии топлива и других первичных видов энергии, главным образом за счет возможностей более полного использования вторичных энергоресурсов.  [c.328]


Смотреть страницы где упоминается термин Энергоресурсы тепловые : [c.321]    [c.18]    [c.119]    [c.91]    [c.471]    [c.5]    [c.314]   
Промышленные тепловые электростанции Учебник (1979) -- [ c.207 ]

Теплоэнергетические системы промышленных предприятий Учебное пособие для вузов (1990) -- [ c.43 ]



ПОИСК



Вторичные тепловые энергоресурсы

Энергоресурсы



© 2025 Mash-xxl.info Реклама на сайте