Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Детали Расчет в условиях статического нагружения

Степень влияния местных напряжений на прочность детали существенно зависит от характера нагружения и материала. При расчете конструкции из пластичных материалов, работающей в условиях статического нагружения, местными напряжениями пренебрегают. Это объясняется тем, что при росте нагрузки напряжения в зоне концентрации, достигнув предела текучести, не возрастают до тех пор, пока во всех соседних точках они не достигнут того же значения, т. е. пока распределение напряжений в рассматриваемом сечении не станет равномерным. Иначе обстоит дело при циклически изменяющихся напряжениях. Многократное изменение напряжений в зоне концентратора напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением детали. Для оценки снижения прочности вводят эффективный коэффициент концентрации, равный отношению предела выносливости о 1 гладкого полированного образца к пределу выносливости образца с концентратором напряжений, абсолютные размеры которого такие же, как и у гладкого образца  [c.248]


Степень влияния местных напряжений на прочность детали существенным образом зависит от характера нагружения и материала. Производя расчет конструкции из пластических материалов, работающей в условиях статического нагружения, местными напряжениями, как правило, пренебрегают. Справедливость этого указания может быть подтверждена следующими рассуждениями. Если на-  [c.184]

Из рассмотренных выше влияний времени на механические свойства материалов наибольшее значение для расчета на прочность большинства деталей машин, конструкций и сооружений, находящихся в условиях статического нагружения, имеют ползучесть и длительная прочность. При этом для учета явлений длительной прочности, за отсутствием систематизированных данных, пользуются эмпирическими формулами и правилами, выведенными на основе специализированных испытаний. Явление релаксации в чистом виде не встречается, и, как правило, это явление имеет малое значение по сравнению с явлением ползучести. В большинстве случаев на детали машин и конструкций действуют определенные нагрузки, а кинематические связи, наложенные на эти детали, обычно таковы, что преобладающими оказываются явления ползучести и течения с некоторой скоростью деформации.  [c.232]

При оценке прочности деталей, работающих в условиях статического нагружения, свойства материала детали отождествлялись со свойствами материала образца, при этом не учитывалась разница ни в форме, ни в размерах детали и образца, на котором были получены предельные напряжения, т. е. предполагалось, что при равных номинальных напряжениях опасность разрушения образца и детали, выполненной из такого же материала, как и образец, одинакова. Многочисленные эксперименты показали, что при переменных напряжениях в расчетах на сопротивление усталости необходимо учитывать ряд факторов, которые существенным образом влияют на сопротивление усталости детали в то время, как на статическую прочность они оказывают незначительное влияние. К наиболее существенным факторам относятся концентрация напряжений, абсолютные размеры поперечных сечений детали, состояние поверхности — ее шероховатость, наличие коррозии, окалины и др. Рассмотрим более подробно влияние этих факторов на сопротивление усталости.  [c.293]

В связи со сказанным нельзя, например, при расчете элемента конструкции из углеродистой стали — материала, пластичного в определенных условиях (статическое нагружение, комнатная температура, линейное напряженное состояние), всегда применять третью или четвертую теории прочности, не считаясь с действительным режимом его работы, или при расчете детали из бетона — материала, хрупкого в указанных выше условиях, всегда пользоваться первой теорией прочности.  [c.144]


Эксплуатационное требование. Сталь должна удовлетворять условиям работы в машине, т. е. обеспечивать заданную конструкционную прочность, что вначале определяется расчетными данными. Детален, рассчитываемых на статическую прочность, сравнительно мало. Это детали с большим начальным натягом, детали котлов и сосудов высокого давления, диски компрессоров и турбин и некоторые детали с малым числом плавных нагружений (иногда проводится расчет на малоцикловую усталость). Многие Детали машин работают в условиях, когда возникают напряжения, переменные по времени. Расчеты сопротивления усталости этих деталей при стационарном нагружении ведут по пределу выносливости с учетом конструктивных и технологических факторов.  [c.313]

Детали трубопроводов, как правило, работают при переменных напряжениях, многократно изменяющихся в процессе эксплуатации. В связи с этим, если число смен нагружений (число циклов N) с амплитудой напряжений, превышающей на 15% расчетный уровень, удовлетворяет условию N < 1000, то считают, что трубопровод работает в условиях повторно-статических нагрузок, и выполняют статический расчет деталей, определяя их размеры по механическим характеристикам, полученным при статических испытаниях. При числе циклов N> 1000 нагружение считают циклическим и после выбора размеров деталей рассчитывают их циклическую прочность при переменном нагружении с учетом предела выносливости материала.  [c.806]

При циклически меняющемся длительном нагружении в нагретом состоянии в детали протекают процессы перераспределения деформаций и напряжений в результате как активного деформирования при изменении нагрузки, так и ползучести или релаксации во время выдержек в нагруженном и деформированном состояниях. Расчет усилий, чисел циклов и времен, соответствующих предельным состояниям, основывают на решении задач об упруго-пластическом распределении деформаций и напряжений в зонах концентрации в зависимости от циклов и времени, а также на использовании критериев разрушения (возникновения трещины) в условиях сочетания длительных статических и циклических изменений, постепенно протекающих в материале.  [c.7]

Выносливость гладкого образца, имеющего небольшой диаметр и испытанного в обычных лабораторных условиях, нельзя отождествлять с выносливостью детали, имеющей иную форму и размеры и работающей в иных условиях нагружения. Недопустимость такого отождествления обусловлена тем, что выносливость является функцией ряда факторов, сказывающихся на ее величине и обычно не учитываемых при расчетах на действие статической нагрузки.  [c.409]

В предыдущих главах рассматривались расчеты на прочность при статическом нагружении элементов конструкций. Однако многие детали машин работают в таких условиях, когда возникающие в них напряжения периодически изменяют свою величину или величину и знак. Сопротивление конструкций действию таких нагрузок существенно отличается от их сопротивления действию статической нагрузки.  [c.307]

Жесткость, или упругую характеристику элементов системы СПИД, определяют расчетом (для простых деталей) и экспериментально (для сложных узлов) при статическом нагружении системы. Жесткость узла зависит от нанравления и точки приложения силы. Поэтому исследования узла проводят в условиях, наиболее полно моделирующих реальные условия последующей обработки. В частности, к узлу прикладывают не только радиальную Ру, зо и вертикальную Р и осевую Рх составляющие усилия резания, назначают определенный вылет резца, положение пиноли задней бабки. Отжатия передней и задней бабок токарного станка определяют, включая отжатия центра и стыка центр — центровое гнездо детали. Полученная характеристика позволяет оценить качество изготовления и сборки данного узла. При высокой точности изготовления ветви характеристики располагаются ближе одна к другой, чем при низкой точности изготовления.  [c.45]

Изменение прочности изделия при длительном статическом нагружении определенной системой внешних сил. Расчетом оценивается несущая способность детали в процессе ползучести. Эта задача сводится к нахождению предела длительной прочности в условиях температурных изменений, а также влияния физической среды. Надежность изделия определяется по заданной длительности эксплуатационного периода.  [c.16]


Какими преимуществами обладают стандартизованные детали (сборочные единицы) при конструировании и выполнении ремонтных работ 7. Что такое стандартизация и унификация деталей и сборочных единиц машин и каково их значение в развитии машиностроения 8. Какие основные требования предъявляются к машинам и их деталям 9. Назовите материалы, получившие наибольшее применение в машиностроении, и укажите общие предпосылки выбора материала для изготовления детали. 10. Какое напряжение называется допускаемым и от чего оно зависит 11. От чего зависит размер предельного напряжения и требуемого (допускаемого) коэффициента запаса прочности 12. Дайте определения цикла напряжений, среднего напряжения цикла, амплитуды напряжения и коэффициента асимметрии цикла напряжений. 13. Какой цикл напряжений называется симметричным, отнулевым, асимметричным 14. Могут ли в детали, работающей под действием постоянной нагрузки, возникнуть переменные напряжения 15. Укажите основные факторы, влияющие на значение допускаемого напряжения и коэффициента запаса прочности. 16. Что следует понимать под табличным и дифференциальным методами выбора допускаемых напряжений 17. Запишите формулу для вычисления допускаемого напряжения при симметричном цикле и статическом нагружении детали. Дайте определения величин, входящих в эти формулы. 18. Запишите формулу для вычисления значения расчетного коэффициента запаса прочности при симметричном цикле напряжений для совместного изгиба и кручения. 19. Укажите основные критерии работоспособности и расчета деталей машин. Дайте определения прочности и жесткости. 20. Сформулируйте условия прочности и жесткости детали.  [c.20]

Экспериментально определенные значенпя Ка относятся к квазихрункому разрушению, и, следовательно, эти значения отражают зависимость от пластических свойств материала. Это нельзя упускать из виду при расчете детали с трещиной, и поэтому длину трещины (иногда полудлину) в аналитическом выражении для К следует увеличивать на Гу. Указанная поправка более важна при однократном статическом нагружении в условиях плоского напряженного состояния и менее важна при усталости, так как в последнем случае размер пластической зоны сравнительно невелик. Поправкой можно пренебречь и при объемном напряженном состоянии в условиях плоской деформации.  [c.130]

Сложные. циклы нагрева и нагружения деталей при расчете долговечности разделяют на участки, на каждом из которых накапливается статическое или усталоетное повреждение. Если цикл повторяется и нагружение не является случайным (например, существует типичный эксплуатационный цикл, в котором характер нагружения деталей машины всегда одинаков), то происходит пропорциональное нагружение материала деталей, при котором соотношение долей статического и циклического повреждений остается неизменным за весь ресурс работы [23]. Это позволяет использовать для анализа предельного состояния и определения запаса прочности представления о поверхности термоциклического нагружения (рис. 98). Для заданных условий нагружения (размаха деформаций Дед, длительности действия нагрузки Тд и ресурса долговечности Л/д) состояние детали характеризуется положением точки А относительно предельной поверхности разрушения. Длительность переходных процессов в цикле здесь исключена из рассмотрения для упрощения анализа, поэтому Тд=ТвЛ д, где Тв — длительность выдержки в цикле.  [c.170]

С помощью полученного графика легко могут быть найдены все параметры, необходимые для характеристики кривых деформирования. Таким образом, можно решить задачу о перераспределении напряжений в детали в процессе ее цикличегкого деформирования и провести расчет несущей способности детали при повторно статическом нагружении. Ширина петли циклического деформирования в известной степени может характеризовать способность материала сопротивляться этому деформированию. Из двух сталей, обладающих при циклическом деформировании различной шириной петли, но одинаковыми прочими механическими свойствами, оказывается более долговечной сталь с малой шириной петли. Таким образом, для конструкций, работающих в условиях повторных нагрузок, ширина петли является весьма важным показателем их возможной долговечности. Этот показатель легко может быть получен с помощью рассмотренного прибора.  [c.70]

Корпуса энергетического оборудования и сосуды под давлением, работающие при статическом и повторноч татическом режимах нагружения, представляют собой крупногабаритные конструкции, в которых по условию прочности и надежности не допускается развитие в большом объеме материала пластических деформаций. Нормы расчета на прочность поэтому предусматривают в качестве основы расчетных методов оценку прочности, в частности, по такому предельному состоянию, как пластическая деформация по всему сечению детали. Это выражается в назначении допускаемого коэффициента запаса прочности по пределу текучести щ = 1,5, который учитывается при выборе основных размеров элементов по общим мембранным напряжениям. Например, в цилиндрической оболочке  [c.204]


Смотреть страницы где упоминается термин Детали Расчет в условиях статического нагружения : [c.463]    [c.158]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.486 ]



ПОИСК



Детали Расчеты

Нагружение Условия

Нагружение статическое

Расчет статический



© 2025 Mash-xxl.info Реклама на сайте