Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали Сопротивление электрическое

В соответствии с ГОСТ 21427.0—75 сталь маркируется четырьмя цифрами. В марке стали цифры означают первая — структурное состояние и вид прокатки (/ — горячекатаная изотропная, 2 —холоднокатаная изотропная,. —холоднокатаная анизотропная с ребровой текстурой) вторая — примерное содержание кремния третья — основные нормируемые характеристики О — удельные потери при магнитной индукции 1,7 Тл и частоте 50 Гц (Р лъй), 1 — при индукции 1,5 Тл и частоте 50 Гц ( i.s/so), 2 — при индукции 1 Тл и частоте 400 Гц (Р1/400), б — магнитная индукция в слабых магнитных полях при напряженности поля 0,4 А/м (Во,4). 7 — магнитная индукция в средних магнитных полях при напряженности поля 10 А м (Sjo). Вместе первые три цифры означают тип стали, четвертая — порядковый номер типа стали. Удельное электрическое сопротивление стали зависит от концентрации кремния. Магнитные характеристики некоторых марок сталей приведены в табл. 3.3 и 3.4.  [c.94]


Электрическое сопротивление сталей тем больше, чем выше содержание углерода и чем больше углерода перешло при закалке в твердый раствор. В доэвтектоидных сталях сопротивление возрастает интенсивнее, чем в за-эвтектоидных. Электрическое сопротивление сталей при температуре 2Q° , содержащих до углерода и закаленных с 850 °С, можно определить по формуле (Л. 34,43]  [c.112]

При электроконтактном нагреве нельзя не учитывать исходной структуры (дисперсности) и химического состава закаливаемой стали. Мелкозернистая структура одного и того же металла, обладая большей суммарной поверхностью раздела, является менее электропроводной. Исследования показывают значительное повышение электропроводности закаленной стали и., мере увеличения температуры отпуска, что связано с понижением дисперсности ее структуры. Отдельные составляющие структуры поликристаллов, как, например, перлит, феррит и цементит, также обладают различным сопротивлением прохождению тока. Наибольшее сжатие силового потока, а также и наиболее высокая температура возникают по границам включений или пор. Это обстоятельство имеет важное практическое значение для обработки поверхностных слоев, образованных при восстановлении деталей наплавкой и металлизацией, содержащих много пор и других объемных дефектов. При расчетах предусмотрено использование среднего сопротивления электрической цепи. В действительности составляющие структуры поликристалла можно представить как параллельные проводники, имеющие различные сопротивления. Однако следует иметь в виду, что каждый повер.хностный микроучасток в процессе обработки подвергается нескольким термомеханическим воздействиям, что способствует некоторому выравниванию температуры.  [c.20]

Марка стали, Удельное электрическое сопротивление р, нОм м, при температуре, °С  [c.610]

Хромоникелевые аустенитные стали обладают электрическим удельным сопротивлением, примерно в 5 раз более высоким, чем малоуглеродистые. По-  [c.97]

Электрическая схема для получения синусоидальной индукции в испытуемом листе стали показана на рис. 5-30. По этой схеме электромагнит питается от выходного напряжения усилителя. На вход усилителя подается напряжение, снимаемое с резистора Г[ делителя, подключенного ко входу усилителя с помощью электродов через лист испытуемой стали. Сопротивление резистора Г1 много меньше, Лг, а /г меньше входного сопротивления усилителя.  [c.230]

Особенности сварки кислотостойких сталей коробление, в два раза большее, чем при сварке обычных малоуглеродистых сталей большое электрическое сопротивление сталей необходимость ведения процесса с очень малым нагревом основного металла.  [c.288]


Магнитные и электрические свойства тесно связаны друг с другом, так как обусловлены одинаковыми физическими явлениями. Поэтому электротехнические стали и сплавы рассматриваются в главе о магнитных сплавах. Электротехнические стали и сплавы делят па проводниковые, у которых сопротивление прохождению электрического тока должно быть минимальным, н сплавы электросопротивления с повышенным электросопротивлением. Первые применяют для передачи электроэнергии на расстоянии, вторые — для преобразования электроэнергии в тепло.  [c.553]

Из физических методов испытаний следует указать на способ измерения межкристаллитной коррозии нержавеющих сталей по изменению электрического сопротивления образца. Степень межкристаллитной коррозии характеризуется при этом изменением электрического сопротивления образца за определенное время коррозии  [c.345]

Величину электросопротивления образцов определяют перед испытанием и после их кипячения в растворе сернокислой меди и серной кислоты. Нарушение контакта между кристаллитами металла в результате межкристаллитного разрушения при кипячении образцов приводит к увеличению электрического сопротивления стали.  [c.345]

Если электрическое сопротивление испытуемых образцов до и после кипячения имеет одно и то же значение или его изменение соответствует уменьшению сечения образца, что указывает па отсутствие в стали склонности к межкристаллитной коррозии. Изменение электросопротивления вследствие уменьшения сечения образца во время кипячения рассчитывается по формуле  [c.346]

Коэффициент теплопроводности стали Я = 64 Вт/(м-°С). Удельное электрическое сопротивление стали р = 0,13 Ом-мм м.  [c.28]

Удельное электрическое сопротивление и коэффициент теплопроводности стали равны соответственно р = 0,85 Ом-мм /м, Х = = 18,6 Вт/(м-°С).  [c.29]

Химический состав, основные свойства и назначение сталей и сплавов с высоким удельным электрическим сопротивлением  [c.283]

Технологические особенности сварки высоколегированных сталей связаны с их физическими свойствами и системой легирования. Пониженная теплопроводность и большое электрическое сопротивление (примерно в 5 раз больше, чем у углеродистых сталей) способствуют большей скорости плавления металла, большей глубине проплавления и коэффициенту наплавки, поэтому для сварки высоколегированных сталей требуются меньшие токи и погонные энергии по сравнению с углеродистыми, укороченные электроды при ручной сварке, меньше вылет электрода и больше скорость подачи проволоки при механизированной сварке.  [c.127]

Таблица 27.27. Магнитные свойства электротехнических сталей с наибольшей проницаемостью в слабых полях [10] (удельное электрическое сопротивление 6-10 Ом-м) Таблица 27.27. <a href="/info/57317">Магнитные свойства</a> <a href="/info/33635">электротехнических сталей</a> с наибольшей проницаемостью в <a href="/info/364660">слабых полях</a> [10] (удельное электрическое сопротивление 6-10 Ом-м)
Подводимая мощность регулируется на стороне высокого напряжения лабораторным автотрансформатором. Регулирование мощности позволяет изменять в опытах температурный напор между поверхностью трубы и окружающим воздухом в щироких пределах. Мощность определяется по току и электрическому сопротивлению материала опытной трубы (нержавеющей стали). Электрическое сопротивление нержавеющей стали существенно изменяется с температурой. Для его определения проводятся предварительные опыты при различных температурах. Результаты измерений представлены. на рис. 4.7.  [c.147]

Рис. 4.7. Зависимость электрического сопротивления нержавеющей стали от температуры Рис. 4.7. Зависимость <a href="/info/19019">электрического сопротивления</a> <a href="/info/51125">нержавеющей стали</a> от температуры

Здесь / (,о=3,34-10 Ом/м — линейное электрическое сопротивление пластины из нержавеющей стали при температуре 20 °G Rt/Ro — относительное электрическое сопротивление пластины при текущем значении ее температуры t x (определяют из графика рис. 4.7) Ь — ширина пластины, м.  [c.155]

Экспериментальная установка. Схема установки представлена на рис. 4.12 Опытный участок представляет собой тонкостенную трубку 1 из нержавеющей стали с прикрепленными к ней с двух концов цилиндрическими камерами 2 и 5 из органического стекла. Размеры трубки внутренний диаметр flf=8,5 мм, длина /=500 мм, электрическое сопротивление трубки / = 0,022 Ом. Движение воздуха по трубке осуществляется газодувкой центробеж-  [c.166]

Рабочий участок (рис. 10.10) представляет собой тонкую пластину 1 шириной й = 0,11 м и длиной L = 0,9 м, изготовленную из текстолита. Наружная поверхность пластины обтянута с обеих сторон тонкой фольгой 2, изготовленной из нержавеющей стали и выполняющей роль электрического нагревателя. Фольга, электрическое сопротивление которой 7 = 0,07 Ом, нагревается током низкого напряжения. Такая конструкция нагревателя практически исключает тепловые потери в окружающую среду.  [c.153]

Изменение свойств стали с ростом температуры вызывает также значительное изменение эквивалентных параметров индуктора. В соответствии с формулой (1-41) полное электрическое сопротивление индуктора  [c.22]

Более высокие показатели имеют нагреватели трансформаторного типа. На магнитной системе трехфазного трансформатора с цилиндрическими первичными обмотками монтируются вторичные обмотки в виде змеевиков (по которым пропускается нагреваемая жидкость или газ), электрически замкнутых накоротко, желательно из немагнитного материала с высоким удельным сопротивлением (аустенитная сталь). Расчет установки проводится, как для обычного трансформатора с активной нагрузкой. Эти нагреватели более сложны в изготовлении, зато обеспечивают высокие КПД, коэффициент мощности (свыще 0,9) и большие удельные мощности, ограниченные лишь условиями теплоотвода от первичной и вторичной обмоток и насыщением магнитной системы. Мощность нагревателей составляет десятки и сотни киловатт. Благодаря высокому коэффициенту мощности они включаются в сеть без компенсации реактивной мощности.  [c.225]

Внешняя поверхность подземных промысловых нефтегазопроводов подвергается коррозионному воздействию грунтов. Коррозионную активность грунтов по отношению к стали определяют по удельному электрическому сопротивлению, потере массы образцов и плотности поляризующего тока (табл. 54).  [c.99]

Самым массовым магнитомягким материалом, имеющим весьма широкую область применения, является специальная электротехническая сталь, легированная кремнием. Она используется для работы в сравнительно сильных переменных магнитных полях в силовых трансформаторах всех типов, электрических машинах, дросселях, в различных электромагнитных реле, приборах. Выпускается электротехническая сталь, легированная кремнием, в листах и рулонах. Кремний, вводимый в сталь в количестве 0,8— 4,8%, образует с железом твердый раствор и резко повышает удельное электрическое сопротивление.  [c.294]

Железо (низкоуглеродистая сталь). Технически чистое железо обычно содержит небольшое количество примесей углерода, серы, марганца, кремния и других элементов, ухудшающих < го магнитные свойства. Благодаря сравнительно низкому удельному электрическому сопротивлению технически чистое железо используется довольно редко, в основном для магнитопроводов постоянного магнитного потока. Обычно технически чистое железо изготовляется рафинированием чугуна в мартеновских печах или конверторах и имеет суммарное содержание примесей до 0,08—0,1 %. За рубежом такой материал известен под названием армко-железо .  [c.275]

Плотность и удельное электрическое сопротивление электротехнической стали зависят от степени ее легирования кремнием, как это показано в табл, 9-2.  [c.277]

В Советском Союзе впервые стали применять электрическую аппаратуру для измерения сил резания в Ленинградском политехническом институте в 1932 г. Сотрудниками этого института Б. П. Бурловым и В. Д. Морозовым были сконструированы приборы для измерения сил резания при фрезеровании и точении, оснащенные емкостными датчиками. Несколько позже этими же вопросами стали заниматься в ЦНИИТМАШ. Здесь были созданы динамометры с фотоэлектрическими и емкостными датчиками, а затем была разработана целая серия токарных динамометров, работающих по принципу изменения угольного сопротивления.  [c.6]

Сочетание высокой прочноегп и пластичности этих чугуиов позволяет изготавливать из них ответственные изделия. Так, коленчатый вал легковой машины Волга изготавливают из высокопрчного чугуна, имеющею состав 3,4—3,6% С 1,8-2,2% Si 0,96—1,2% Мл 0,16-0,30% Сг <0,01% S <0,06% Р и 0,01—0,03% Mg. Чугун со столь узкими пределами по элементам и низким содержанием серы и фосфора выплавляют не в вагранке, а в. электрической печи. Это обстоятельство, а также применение термической обработки приводит к получению еще более высоких свойств, чем это указано л табл. 24, а именно ац = 62-н65 кгс/мм б = 8- -12% и твердость НВ 192—240. Хотя этот чугун но механическим свойствам и уступает стали констру - тивная прочность коленчатого вала из такого чугуна может быть выше, что в целом уменьшит массу машины. Из чугуна, обладающего лучшими, чем у стали, литейными свойствами, можно литьем (дешевым способом) изготавливать изделия сложной конфигурации (с внутренними полостями и т, п,), обладающие лучшим сопротивлением разнообразным механи-ческн. воздействиям, чем более простые по форме кованые детали, Дру ими словами, в ряде случаев деталь сложной конфигурации из менее прочного материала (чугуна) конструктивно оказывается более прочной, простой по конфигурации детали из более прочного материала (стали).  [c.218]


Физические свойства и высокая температура плавления требуют при сварке концентрированного источника тепла, но низкий коэффициент теплопроводности и высокое электрическое сопротивление создают условия, при которых для сварки титана необходимо меньше электрической энергии, чем для сварки стали и особенно А1. Титан маломагнитен, поэтому при его сварке заметно уменьшается магнитное отдувание дуги.  [c.106]

При расчете принять удельное электрическое сопротивление и коэффициент теплопроводности стали постоянными и равными соответственно р = 0,85 Om-mmVm, Х=19,8 Вт/(м-°С).  [c.95]

Система из двух электрических проводников (электродов), погруженных в электролит, называется гальваническим элементом в честь итальянского физика из Болоньи Луиджи Гальвани, который опубликовал свои электрохимические исследования в 1791 г. Гальванический элемент преобразует химическую энергию в электрическую. Если замкнуть элемент проводником с низким сопротивлением, по проводнику потечет ток, направление которого условно принято от положительного электрода к отрицательному (положительный ток). Это условие было принято еще до того, как что-либо стало известно о природе электричества, и применяется сейчас вопреки общеизвестному факту, что только отрицательно заряженные частицы — электроны — могут перемещаться в металле, и ток течет от отрицательного полюса к положительному.  [c.22]

Отмечено [27], что при анодной защите достигается необычно высокая рассеивающая способность (защита на удаленном от катода расстоянии и защита электрически экранированных поверхностей), намного превосходящая рассеивающую способность при катодной защите. Причину этого приписывали высокому электрическому сопротивлению пассивирующей пленки, что, по всей видимости, неверно, так как ее измеренное сопротивление обычно невелико. Другое объяснение может быть связано с антикоррозионными ингибирующими свойствами анодных продуктов коррозии, образующихся в малых количествах на поверхности нержавеющих сталей (например, ЗгОз , , Fe " ), которые  [c.230]

Рис. 18.3. Изменение электрического сопротивления нержавеющих сталей 18-8, содержащих азот или углерод, вследствие межкристаллитной коррозии в растворе 10% USO410% H2SO4. Все образцы предварительно сенсибилизированы при указанных на рисунке температурах в течение 217 ч Рис. 18.3. Изменение <a href="/info/19019">электрического сопротивления</a> <a href="/info/51125">нержавеющих сталей</a> 18-8, содержащих азот или углерод, вследствие <a href="/info/1556">межкристаллитной коррозии</a> в растворе 10% USO410% H2SO4. Все образцы предварительно сенсибилизированы при указанных на рисунке температурах в течение 217 ч
Электрохимическое обессоливание основано на разделении и удалении ионов солей под действием постоянного электрического тока. Устройство представляет собой ванну, в которую погружены два электрода (катод и анод), а между ними ионитовые диафрагмы толщиной 1 мм (рис. 19.21). Эти диафрагмы обладают избирательной ионопроницаемостью, очень большим диффузионным сопротивлением высокой электропроводностью. Избирательная ионопроницаемость заключается в том, что диафрагма из катионита не пропускает анионы, но пропускает катионы, а анионитовые диафрагмы, наоборот, проницаемые для анионов и практически непроницаемы для катионов. Ионитовые диафрагмы изготовляют из ионитовых смол различных марок. Под действием тока, проходящего последовательно через все камеры, катионы растворенных солей (например, Na+) переносятся к катоду, а анионы (например, С1 )—к аноду. Вследствие этого в одних камерах, образуемых диафрагмами (например, в четных), получается обессоленная жидкость, а в других (нечетных) — сильно концентрированная жидкость (рассол). В качестве материала для катода рекомендуется нержавеющая сталь, а для анода — магнетит (плавленая закись— оксид железа). Диафрагмы обессоливающей ванны зажаты между крышками с торцовых сторон ванны, стянутыми болтами, и изолированы друг от друга резиновыми или кинлингеритовы-ми прокладками в виде рамы.  [c.272]

Удельное электрическое сопротивление оказьшает большое влияние на коррозионную агрессивность почвы, которая тем больше, чем меньше ее удельное сопротивление. Однако ввиду того, что удельное сопротивление зависит от влажности, состава и концентрации солей, воздухопроницаемости почвы и др., по его значению нельзя однозначно оценить коррозионную активность почвы. Интенсивность почвенной коррозии -результат воздействия многочисленных взаимосвязанных и переменных во времени факторов, и изменение одного из них оказывает влияние на суммарное воздействие факторов. В СССР коррозионную активность почв по отношению к стали оценивают по трем показателям удельному сопротивлению, потере массы образцов и плотности поляризующего тока. Коррозионную активность грунтов устанавливают по показателю, характеризующему наибольшую коррозионную активность (табл. 9).  [c.45]

Для отечественных стальных обсадных труб всех групп прочности, а также для труб из японских сталей марок С75 и РИО (по стандарту АР-1) удельное электрическое сопротивление при температуре 20 °С рекомендуется принимать равным 0,260-10 Ом/м. Пересчет сопротивлеяия трубы на температуру 20 °С осуществляется по формуле  [c.132]

Исследование теплоотдячи при нагревании аргона в условиях дозвукового течения оиисано в [Л. 5-20]. Опытная труба 5 (рис. 5-1(5) выполняется из нержавеющей стали и включается в электрическую цепь генератора постоянного тока 10. Последовательно с этой трубой включается нормальное сопротивление 11 для определе-248  [c.248]

Кремнистая электротехническая сталь содержит углерода менее 0.05 6 и кремния от 0,7 до 4.8 % п относится к магнитомяг-ким материалам широкого потребления. Легирование стали кремнием приводит к существенному ловышению удельного электрического сопротивления, которое растет линейно от 0,1 мкОм-м при нулевом содержании кремния до 0,60 мкОм-м при содержании кремния 5,0 %, к увеличению [im и Цгтах. уменьшению Н , снижению потерь на гистерезис. Сталь с содержанием кремния 6,8 % овладеет наивысшей магнитной проницаемостью, но в промышлен1 рсп  [c.93]

Сталь как проводниковый материал используется также в виде шин, рельсов трамваев, электрических железных дорог (включая третий рельс метро) и пр. Для сердечников сталеалюминиевых проводов воздушных линий электропередачи (см. выше) применяется особо прочная стальная проволока, имеюи ая 0 =1200—1500 Л Па и А/// = 4—5 %. Обычная сталь обладает малой стойкостью к коррозии даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком. Непрерывность слоя цинка проверяется опусканием образца провода в 20 %-иый раствор медного купороса при этом на обнаженной стали в местах дефектов оцинковки откладывается медь в виде красных пятен, заметных на общем сероватом фоне оцинкованной поверхности провода. Железо имеет высокий температурный коэффициент удельного сопротивления (см. табл. 7-1 и рис. 7-15). Поэтому тонкую железную проволоку, помещенную для защиты от окисления в баллон, заполненный Еюдородом или иным химическим неактивныи газом, можно применять в бареттерах, т. е. в приборах, использующих зависимость сопротивления от силы тока, нагревающего помещенную в них проволочку, для поддержания постоянства силы тока при колебаниях напряжения.  [c.204]



Смотреть страницы где упоминается термин Стали Сопротивление электрическое : [c.92]    [c.190]    [c.298]    [c.392]    [c.352]    [c.55]    [c.77]    [c.143]    [c.322]    [c.12]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.220 ]



ПОИСК



Печи: индукционные для получения чугунов 550 плавильные для стали сопротивления тигельные 240 электрические для прокаливания флюса

Сопротивление стали

Сопротивление электрическое

Стали и сплавы с высоким электрическим сопротивлением

Стали и сплавы с высоким электрическим сопротивлением для нагревательных элементов



© 2025 Mash-xxl.info Реклама на сайте