Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы нелинейные — Колебания со многими степенями свободы

Известно, что при исследовании колебаний нелинейных систем принцип суперпозиции неприменим. Это обстоятельство заставляет при исследовании колебаний нелинейных систем с многими степенями свободы ограничиваться изучением одночастотного режима колебаний, предполагая, что система колеблется с какой-то одной преобладающей частотой.  [c.176]

Боголюбов Н. Н. Одночастотные свободные колебания в нелинейны.ч системах со многими степенями свободы. Сборник трудов Института строительной механики. Т. 10. 1948.  [c.511]


Численное интегрирование полученной системы уравнений не представляет затруднений, тем более, что эта система распадается на две независимые системы, описывающие поперечные и продольные колебания упругой шарнирной цепи. Как видно из полученных уравнений, нелинейность существенным образом влияет на амплитуды и частоты поперечных колебаний, в то время как амплитуды продольных колебаний такого влияния не испытывают. Поэтому в дальнейшем уравнения, описывающие продольные колебания масс цепочки, могут быть проинтегрированы самостоятельно в линейной постановке. Затем, подставляя решение для в систему уравнений, описывающих поперечные колебания масс цепи, приходим к задаче о воздействии на нелинейную колебательную систему со многими степенями свободы возмущающей силы с несколькими частотами. Поскольку правые части (102) не зависят от р,, ф , то первое и третье уравнения этой системы удобны для исследования амплитуд М,-, NI-  [c.41]

СВЯЗЯМИ. Например, при создании транспортирующих и многих технологических вибрационных машин необходимо сообщить колебания упругой балке или оболочке, мало отличающиеся от их прямолинейных поступательных колебаний как твердых тел. Данную проблему можно назвать проблемой создания (синтеза) заданного вибрационного поля. Ее особенности и трудности решения определяются в основном следующими обстоятельствами. Во-первых, применяемые в настоящее время вибровозбудители (см. часть третью) развивают вынуждающие силы, распределенные по некоторой небольшой части поверхности упругих тел, входящих в колебательную систему эти силы уместно считать сосредоточенными. Во-вторых, число вибровозбудителей практически всегда ограничено, более того, по экономическим и эксплуатационным соображениям желательно, чтобы их число было минимальным. В-третьих, действие реальных вибровозбудителей на колебательную систему далеко не всегда можно свести к действию заданных вынуждающих сил, как это обычно делается в теории вынужденных колебаний. Указанные силы существенно зависят от колебаний тех участков упругой системы, с которыми связаны возбудители, вследствие чего возбудители образуют с упругой системой единую колебательную систему с большим, нежели у исходной системы, числом степеней свободы за счет добавочных собственных степеней свободы вибровозбудителей. Уравнения движения совокупной системы оказываются при этом, как правило, нелинейными.  [c.146]

Первая лекция. Важность изучения колебательных движений при рассмотрении многих вопросов современной техники. Причины возникновения колебаний. Свободные колебания систем с одной степенью свободы. Типичные примеры колебания груза на пружине, крутильные колебания диска, колебания груза на конце консоли, малые колебания математического и физического маятника. Условия, при которых упомянутые системы можно рассматривать как системы с одной степенью свободы. Общность рассмотренных задач. Интегрирование дифференциального уравнения свободных колебаний. Параметрическая структура коэффициента жесткости. Возникновение нелинейных задач теории колебаний.  [c.22]


Рассмотрим систему с одной степенью свободы, на которую наложены голономные стационарные связи и действуют заданные стационарные силы при этом предположим, что у системы имеет-ся положение устойчивого равновесия. Разложение кинетической, потенциальной и диссипативной функций в окрестности этого положения вплоть до членов второго порядка малости включительно приводит к линейному уравнению. Однако во многих практически важных задачах возникает необходимость исследования колебаний с достаточно большими амплитудами и скоростями. В таких случаях линейное приближение оказывается недостаточным и приходится учитывать последующие члены разложений, приводящие к нелинейным уравнениям. Если при этом отклонения от положения равновесия и скорости точек не слишком велики, то соответствующие уравнения будут описывать малые нелинейные колебания.  [c.311]

Нри достаточно большой амплитуде нелинейные колебания неустойчивы в конвективных ячейках эта неустойчивость проявляется в появлении вторичного течения, а в нелинейных волнах она приводит к т. н. распаду волн, т. е. к возбуждению вторичных волн, связанных с основной волной законами сохранения энергии и импульса. Эти процессы приводят к развитию турбулентности в И., т. е. к возбуждению большого числа коллективных степеней свободы. По своей природе турбулентность П. сходна с др. коллективными процессами в системах многих частиц (см. Кооперативные явления).  [c.22]

Исследованию нелинейных ДГК посвящено много работ [1, 10, 32, 43]. Изучены кусочно-линейные, а также изменяющиеся по кубическому закону или по закону гиперболического синуса характеристики упругого элемента гасителя. Нелинейность упругой характеристики позволяет получить в системе с двумя степенями свободы только одну резонансную частоту с неограниченно возрастающими амплитудами колебаний, поэтому колебания уменьшаются в более широкой полосе частот возмущающей силы, чем в случае линейного гасителя (также без демпфирования). Эффективность ДГК с нелинейной упругой связью и оптимальным демпфированием близка к эффективности линейного ДГК.  [c.159]

Выражения (5.89) совпадают с аналогичными выражениями, полученными в работах [4, 12, 98] методом разложения в ряд по малому параметру решения исходного уравнения и преобразованием Лапласа. Преимуществом изложенной методики является то обстоятельство, что она без принципиальных трудностей переносится на системы со многими степенями свободы, нелинейные системы и позволяет определить требуемые вероятностные характеристики обобщенных координат. При этом охватывается случай исследования устойчивости динамических систем, содержащих перекрестные нелинейные связи. Отметим, что при Sj ( 2) = onst результаты совпадают с данными работы [108]. Исследование частных случаев (5.73) в детерминированной постановке задачи для комбинационного резонанса описано во многих работах [10, 19, 95 и др. ]. Приведенные выше результаты показывают, что, как и в детерминированном случае, спектр частот, при которых возникают параметрические колебания, состоит из ряда малых интервалов. Длины этих интервалов зависят от амплитуды возмущений и стягиваются к нулю, когда амплитуда стремится к нулю. При этом возрастание амплитуды колебаний системы происходит по показательному закону. Выражение (5.89) в этом случае определяет степень опасности комбинационного резонанса, когда спектральные плотности параметрических возмущений соответствуют, например, сейсмическим воздействиям в виде многоэкстремальных функций несущих частот, что особенно часто встречается на практике.  [c.219]

Митропольский Ю. А. О стационарных колебаниях в нелинейных системах со многими степенями свободы. Сборник трудов института строительной механики. № 12. Киев, Изд-во АН УССР, 1950.  [c.516]

МЕТОД ИЗОКЛИН. В дальнейшем изложении теории нелинейных колебаний ограничимся главным образом системами с одной степенью свободы, наметив в общих чертах некоторые методы общей теории нелинейных систем со многими степенями свободы. В частности, в этой главе мы будем заниматься простейшими нелинейными системами с одной степенью свободы, объединив их изучение одним общим методом фазовой плоскости или методом изоклин. Это — один из графических методов интегрирова-. ния системы дифференциальных уравнений вида  [c.472]


Можно изучить колебания и в системах с несколькими электромагнитами, а также в случае многих механических степеней свободы [15]. О расчете электромагнитных вибровозбудителей см. в т. 4. При существенной магнитной нелинейности (насыщении стали) задача решается аналогично, только усредняются соотношения типа (30). В этом случае возмо/кны механические колебания с частотой сети под действием электромагнитов, имеющих только одну обмотку, подключенную непосредственно к сети (см. также т. 4). В магиитно-линейном случае для таких магнитов ((. = О, устойчивым режимам соответствует j = О и колебания имеют частоту 2(о [см. (54)]. Тот же эффект —механические колебания частоты ш при питании только переменным током —можно получить при ударах якоря о преграду [2].  [c.344]


Смотреть страницы где упоминается термин Системы нелинейные — Колебания со многими степенями свободы : [c.21]    [c.14]    [c.176]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.0 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.0 ]



ПОИСК



Колебания нелинейные

Колебания системы нелинейные

Колебания системы со многими степенями свободы

Нелинейность колебаний

Системы нелинейная

Системы нелинейные — Колебания со многими степенями свободы Динамическая жесткость

Системы со многими степенями свободы

Степени свободы системы

Степень свободы



© 2025 Mash-xxl.info Реклама на сайте