Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб — Энергия деформации балок

При поперечном изгибе в сечениях, кроме изгибающих моментов, возникают поперечные силы, совершающие работу, но для достаточно длинных балок их влиянием на величину потенциальной энергии деформации можно пренебречь и энергию деформации вы-  [c.266]

Изгиб — Энергия деформации 86 Изгиб балок 96—98, 101, 103, 289, 315  [c.628]

Отсюда видно, что для длинной балки 1/Н >8) второе слагаемое, определяющее долю потенциальной энергии деформации балки от перерезывающих сил Qy, составляет менее 0,78/64 0,0122 = 1,22 % от первого слагаемого — потенциальной энергии деформации от изгибающих моментов М . Поэтому для длинных балок второе слагаемое в формуле (8.7.3) можно не учитывать и принимать, что при изгибе балки  [c.230]


В проведенных рассуждениях пока не учтена энергия деформаций от напряжений Тху и связанных с перерезывающими силами Qy и В разд. 8.7 показано, что для достаточно длинных балок, т.е. для балок, деформацию изгиба которых удовлетворительно представляет гипотеза плоских сечений, перерезывающие силы дают малую в сравнении с изгибающими моментами энергию деформации. Однако в случае необходимости можно учесть и ее, добавив, например, к выражению (9.3.3) слагаемые (см. п. 8.7.3)  [c.265]

Энергия деформации сплошной пластины подсчитывается с учетом поперечного сдвига в предположении о параболическом изменении касательных напряжений по толщине. Для балок учитывается энергия изгиба, кручения, поперечного сдвига длина балки принимается равной высоте перпендикуляра, опущенного из центра тяжести треугольника, вершины которого совпадают с центрами отверстий, на одну из его сторон. Если пренебречь энергией поперечного сдвига, то  [c.297]

Построение матрицы жесткости элемента для изгибаемых стержня или пластины с учетом деформаций сдвига не может быть осуществлено в явном виде посредством подстановки поля поперечных перемещений (15.14а) в суммарное выражение энергий изгиба и сдвиговых деформаций. Как уже отмечалось (12,49], требование, что при изгибе балок плоские сечения остаются плоскими, приводит к внутреннему ограничению, исключающему деформации сдвига. Когда это ограничение снято, то появляются сдвиговые деформации, обусловливающие дополнительный вклад во внутреннюю энергию, и для того чтобы сохранилось равенство величин внутренней энергии и работы внешних сил, необходимо такое же увеличение работы внешних сил. Таким образом, узловые силы соответствуют возросшим значениям перемещений, и так как коэффициент жесткости определяется по единичному смещению, то значение силы, вызывающее единичное смещение при допущении сдвиговых деформаций, должно уменьшиться.  [c.377]

Надо заметить, что ввиду отсутствия касательных напряжений в поперечном сечении (чистый изгиб) может показаться, что никакой прочности от склейки вообще не надо требовать. В действительности мы обычно не рассматриваем торцы балки, где приложена внешняя нагрузка. Если же ее распределение отличается от такового для внутренних нормальных напряжений (в неповрежденной балке), то при расслоении, вообще говоря, изменится распределение напряжений в поперечном сечении и это приведет к высвобождению энергии. Если исходить из требования гарантированной прочности (при любых торцевых распределениях нормальных нагрузок), т. е. ставить требование с запасом , то следует считать, что торцевой момент приложен лишь к одной из склеенных балок. Тогда (для балок прямоугольного поперечного сечения) начальная UQ и после отслоения плотности потенциальной энергии деформации следующие  [c.17]


Первый вариационный принцип для энергии использовался при выводе интегралов, из которых получаются дифференциальные уравнения теории упругости, но он имеет более широкое применение, благодаря тому что с его помощью можно найти приближенные выражения для деформации упругих балок, пластинок и. других тел во многих важных для приложений случаях, когда проинтегрировать дифференциальные уравнения и найти точное решение невозможно. Швейцарский математик Вальтер Ритц ), к сожалению, скончавшийся в раннем возрасте, показал, как можно находить такие приближенные решения. Например, в случае изгиба пластинки он предложил представить уравнение ее изогнутой поверхности в виде суммы конечного числа членов  [c.151]

Ранее подчеркивалось, что на практике в основном используют подходы, основанные на принципе минимума потенциальной энергии (предполагаемые перемещения). Имеется все же возможность использовать эти подходы при формулировке уравнений жесткости с учетом поперечных сдвиговых деформаций для балок, пластин и оболочек путем простой аппроксимации, в которой суммируются результаты, полученные по отдельности при анализе чистого изгиба и чистого сдвига. Чтобы описать этот подход, изучим элемент 1—2, изображенный на рис. 12.16, являющийся частью всей балочной конструкции. Из рисунка видно, что поперечная сдвиговая деформация равна 7,х2=(ьУг—где верхним индексом 5 отмечено, что соответствующие перемещения обусловлены лишь деформациями сдвига. Кроме того, так как Ухг=2( + 1)Рх А Е, то  [c.379]

Даже беглого взгляда на оглавление достаточно, чтобы увидеть, какие темы освещаются в этой книге. Сюда входят и методы расчета элементов конструкций при продольном нагружении, кручении и изгибе, и основные понятия механики материалов (энергия преобразование напряжений и деформаций, неупругое деформирование и т. д.). К частным вопросам, интересующим инженеров, относятся влияние изменения температуры, поведение непризматических балок, большие прогибы балок, изгиб несимметричных балок, определение центра сдвига и многое другое. Наконец, последняя глава представляет собой введение в теорию расчета конструкций и энергетические методы, включая метод единичной нагрузки, теоремы взаимности, методы податливостей и жесткостей, теоремы об энергии деформации й потенциальной энергии, метод Рэлея — Ритца, теоремы о дополнительной энергии. Она может служить основой для дальнейшего изучения современной теории расчета конструкций.  [c.9]

Нашей задачей является найти выражение для энергии деформации балки. Техническая теория изгиба балок основывается на представлении, что деформация балки, если пренебречь очень малыми величинами, определяется деформацией ее средней линии ( / == г = 0). К выражению для работы деформации можно притти, лнбо делая специальные допущения относительно деформации, например, что поперечные сечения балки, перпендикулярные к средней линии, остаются и при изгибе к ней перпендикулярными и плоскими, либо выбирая строго интегрируемый случай, и распространяя получающееся из него выражение для работы деформации на общий случай изгиба. Мы остановимся на последнем методе и для простоты будем рассматривать перемещения средней линии только в направлении оси общий случай получается отсюда наложением друг на друга напряжений и деформаций.  [c.70]

Результаты показывают, что использование формулировок на базе линейных смещений на границе (межэлементно совместимых) приводит к довольно медленной сходимости к эталонному решению То же самое справедливо и для треугольных элементов (см. рис. 9.11). Напротив, использование формулировок с несовместимыми модами приводит к очень точным решениям в этой задаче Результаты для наименьшего числа степеней свободы 60 степеней свободы) получены при измельчении сетки лишь в направлении оси х, т. е. при одном элементе по толщине балки. Поэтому формулировки для плоско-напряженных задач общего вида можно использовать в представлении частных случаев изгиба, где обычно требуется выполнение гипотезы плоских сечений (плоские сечения до деформации остаются плоскими после нее). Для задач изгиба балок не часто требуется строить элементы, отличающиеся от простейшего изгиб-ного элемента, однако в гл. 10 будет показано, что концепция несовместимых мод, являющаяся альтернативной в смысле интегрирования энергии деформации элемента на грубых сетках, весьма полезна при использовании трехмерных элементов теории упругости для анализа пластин и оболочек.  [c.300]


Усилия и перемещения в сечениях балок. Нагрузка статическая или динамическая механические параметры балки постоянны. Вводится аналогия между распределением токов, потенциалов и электрической энергии в электрической цепи и условиями равновесия, деформациями и потенциальной и кинетической энергиями в деформируемой системе. Электрическая модель составляется из активных и реактивных сопротивлений и трансформаторов по участкам балки в соответствии с тем, что дифференциальное уравнение изгиба балки четвертого порядка может быть заменено уравнениями в конечных разностях по сечениям х . 1, X I, х , X I,. .. В элек-  [c.600]


Смотреть страницы где упоминается термин Изгиб — Энергия деформации балок : [c.7]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.50 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.50 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.50 , c.104 , c.106 , c.107 ]



ПОИСК



Деформации балок

Деформация изгиба

Изгиб балок

Изгиб — Энергия деформации

Изгиб — Энергия деформации балок косой

Изгиб — Энергия деформации балок продольно-поперечный

Потенциальная энергия деформации при изгибе балки

Упругая энергия деформации 17, 23, 43, 63, 117, 121,-аддитивна при некоторых условиях 43,---------------------анизотропных материалов 413,----------------------------------------изгиба в балках 60, 63, 220,-- — изотропных материалов 411,---------------------------------кручения 201,-пластинок

Энергия деформации



© 2025 Mash-xxl.info Реклама на сайте