Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волны на поверхности раздела двух потоков жидкостей

В ряде его работ рассмотрены важные задачи теории вибраторов, сообщающих периодические колебания поверхности ограниченной жидкости (1949, 1950, 1954 гг.). В работе Преломление и отражение плоских волн в жидкости при переходе с одной глубины на другую (1950 г.) впервые с точки зрения гидродинамики изучено изменение формы волны, выходящей на мелководье. Публикация О волнах на поверхности раздела двух потоков жидкости, текущих под углом друг к другу (1952 г.) позволила объяснить возникновение перисто-кучевых облаков. В статье Задача Коши — Пуассона для поверхности раздела двух текущих потоков (1955 г.) показано, что при начальном возмущении на поверхности раздела двух неограниченных жидкостей разной плотности, текущих с разными скоростями, неподвижный наблюдатель уловит правильные, почти строго периодические чередования подъемов и спадов жидкости. Это не следует из обычной постановки задачи Коши — Пуассона.  [c.11]


Волны на поверхности раздела двух потоков жидкости  [c.392]

О волнах на поверхности раздела двух потоков жидкости, текущих под углом друг к другу.— Изв. АН СССР, ОТН, 1952, 12, 1782—1787.  [c.808]

ПОГЛОЩЕНИЯ ПОКАЗАТЕЛЬ (к, ), величина, обратная расстоянию, на к-ром монохроматич. поток излучения длины волны X, образующий параллельный пучок, ослабляется за счёт поглощения в в-ве в е раз (натуральный П. п. см. Бугера — Ламберта — Бера закон) или 10 раз (десятичный П. п.). Измеряется в см или м" . См. Поглощение света. ПОГРАНИЧНЫЙ СЛОЙ, область течения вязкой жидкости (газа) с малой по сравнению с продольными размерами поперечной толщиной, образующаяся у поверхности обтекаемого тв. тела, у стен канала, по к-рому течёт жидкость, или на границе раздела двух потоков жидкости с разл. скоростями, темп-рами или хим. составом. П. с. характеризуется резким изменением в поперечном направлении скорости (динамич. П. с.) или темп-ры (тепловой, или температурный, П. с.) или же концентраций отд. хим. ком-  [c.555]

Если верхняя жидкость течет со скоростью Шх относительно нижней, то теория показывает, что возникающие волны устойчивы только в том случае, если их длина достаточно велика. Короткие же волны, подобно тому, как это было показано в 7 для движения двух потоков жидкости вдоль поверхности раздела, неустойчивы, что приводит к перемешиванию обеих жидкостей в промежуточной зоне это перемешивание восстанавливает устойчивость течения. При увеличении скорости 71 граница между неустойчивостью и устойчивостью перемещается в сторону волн с большей длиной. Волны такого рода могут возникать также в атмосфере на границе двух слоев воздуха разной плотности, движущихся относительно друг друга иногда эти волны делаются видимыми благодаря образованию так называемых волнистых облаков.  [c.134]

Метод Леви-Чивита был с успехом применен С. Р. Синхом к решению задачи о волнах конечной амплитуды, образуюш,ихся на открытой поверхности и на поверхности раздела двух жидкостей нижняя жидкость имеет бесконечную глубину, верхняя же имеет данную конечную глубину и отличается от нижней своей плотностью [46]. В работе определяются периодические волны двух разных семейств волны первого семейства имеют большее развитие на свободной поверхности, чем на поверхности раздела волны второго семейства, чисто внутренние, имеют амплитуду значительно большую, чем амплитуда поверхностных волн. В предположении, что скорости верхней и нижней жидкости одинаковые, устанавливается соотношение между длиной установившейся волны (того или другого семейства) и скоростью потоков в такое соотношение входят амплитуды образовавшихся волн.  [c.723]


Гидродинамическое направление аналитически изучает поведение простых периодических волн на поверхности жидкости, лишенной трения. Это самый старый и разработанный раздел учения о волнообразовании. Наиболее просто причины возникновения В0.ПН могут быть объяснены при рассмотрении течения двух невязких жидкостей различной плотности, движущихся с заданными скоростями (метод Кельвина—Гельмгольца). Это теоретическое решение позволяет показать, что поток газа, движущийся вдоль волновой поверхности раздела фаз, приводит к возникновению разрежения над гребнями волн и повышению давления во впадинах, т. е. способствует развитию волнообразования. Следующая степень приближения, предложенная Майлзом [198], состоит в том, что для невязких сред учитывается существование профиля скоростей вблизи поверхности раздела фаз. Несмотря на идеализацию процесса волнообразования, это направление позволяет установить основные качественные соотношения между различными параметрами волновой системы, а поэтому продолжает успешно развиваться. Вместе с тем при использовании соотношений, справедливых для жидкости, лишенной трения, необходимо учитывать, что наличие сил вязкости в слое, близком к границе раздела, приводит к возникновению ряда дополнительных эффектов, которые не могут быть учтены в рамках метода Кельвина—Гельмгольца—Майлза. Например, в вязких средах возможно появление отрывного течения с повышением давления с наветренной стороны пучности волны и понижением с подветренной стороны [58, 78]. Отдельные вопросы волнообразования в вязких средах были проанализированы Брук-Бенджемином [160]. Однако в целом теория такого течения практически не разработана.  [c.182]

Следует, однако, отметить, что сила тялсести может оказывать существенное влияние на движение жидкости при неоднородном распределении плотности. Например, при смешении двух горизонтальных потоков с разными плотностями на поверхности раздела образуются волны, обусловленные влиянием силы тяжести. В задачах свободной конвекции, возникающей при наличии перепада температуры АГ в потоке и зависимости плотности жидкости от температуры [7], часто можно положить  [c.95]

Внутренние гравитационные и иные волны. Наряду с поверхностными гравитационными и капиллярными волнами в океане существует множество других видов волн, которые играют важную роль в динамике океана. Океан, в отличие от идеальной жидкости, стратифицирован — то есть его воды не являются однородными, а изменяются по плотности с глубиной. Это распределение обусловлено потоками энергии (тепла) и вещества. В упрощенном виде океан можно представить состоящим из двух слоев воды сверху лежит более легкая (теплая или менее соленая), снизу — более плотная (более соленая или холодная). Подобно тому как поверхностные волны существуют на границе вода-воздух, на границе раздела вод разной плотности будут существовать внутренние гравитационные волны. Амплитуда волн этого типа в океане может достигать сотни метров, длина волны — многих километров, но колебания водной поверхности при этом ничтожны. Внутренние волны проявляются на поверхности океана, воздействуя на характеристики поверхностных волн, перераспределяя поверхностно-активные вещества. По этим проявлениям они и могут быть обнаружены на поверхности океана. Так как поверхностные гравитационно-ка-пиллярные волны и поверхностно-активные вещества сильно влияют на коэффициент отражения электромагнитных, в том числе световых волн, внутренние волны хорошо обнаруживаются дистанционными методами, например, они видны из космоса. Внутренние волны по сравнению с обычными поверхностными гравитационными волнами обладают рядом удивительных свойств. Например, групповая скорость внутренних волн перпендикулярна фазовой, угол отражения внутренних волн от откоса не равен углу падения.  [c.130]


Смотреть страницы где упоминается термин Волны на поверхности раздела двух потоков жидкостей : [c.16]    [c.277]    [c.32]   
Смотреть главы в:

Теория волновых движений жидкости Издание 2  -> Волны на поверхности раздела двух потоков жидкостей



ПОИСК



Волны на поверхности жидкости

Волны на поверхности раздела

Волны на поверхности раздела двух жидкостей

Жидкость поверхности

Поверхность волны

Поверхность раздела

Поверхность раздела двух потоков

Поверхность раздела жидкостей

Поток жидкости



© 2025 Mash-xxl.info Реклама на сайте